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We present a theoretical and experimental study of modulation instability and pattern formation in a passive

nonlinear optical cavity that is longer than the coherence length of the light circulating in it.

Pattern forma-

tion in this cavity exhibits various features of a second-order phase transition, closely resembling laser action.

© 2004 Optical Society of America
OCIS codes: 190.3100, 190.4420.

1. INTRODUCTION

Many nonlinear systems in nature exhibit instability of a
homogeneous state. For example, in fluid convection sys-
tems, chemical reactions, or biological systems,! a homo-
geneous initial state can break up and transform into a
wealth of intricate fine structures that are generally or-
dered patterns. This is the general trend even though
the instability arises from random fluctuations (noise).
In many cases the emerging pattern is an array of
solitons.? In the past few decades, following the inven-
tion of lasers, the phenomenon of spontaneous pattern
formation has been observed and extensively studied in
various generic optical systems,>* including active®® and
passive!®17 nonlinear resonators (cavities) as well as one-
way propagation (zero feedback)!®2° and counterpropa-
gating schemes.??2 The nonlinearities in such systems
can arise from a variety of physical mechanisms: elec-
tronic transitions in atomic gas,?® semiconductor gain
media,? photorefractives!®!118 and thermal'® nonlineari-
ties, to name a few. However, in spite of this diversity,
the phenomenon of pattern formation is universal, irre-
spective of the nonlinearities involved,® and occurs also in
the temporal domain.'3"® In the spatial domain, modu-
lational instability (MI) breaks a uniform beam (a plane
wave) into equally spaced filaments that in many cases
develop into regular latticelike patterns—typically stripes
or hexagons.®1%16-22  Ag noted above, pattern formation
can occur either in cavities or in zero-feedback systems.
There are, however, two distinct features distinguishing
cavity pattern-formation from patterns evolving during
one-way propagation in the absence of any feedback.
The first such feature is the existence of a threshold for
cavity pattern-formation, below which patterns do not
form. This feature is common to all coherent cavities, in-
cluding passive cavities.?> The second feature has to do
with the set of resonant frequencies, which is inherent to
all coherent cavities. The pattern-formation process is
directly affected by the difference between the frequency
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of the light circulating in the cavity and its nearest reso-
nant frequency (e.g., see Refs. 3 and 6).

Traditionally, pattern formation and MI were investi-
gated in fully coherent cavities, in which the coherence
length of the light is much longer than the cavity
length.5>17 In this case, all the fields circulating in the
resonator were not only quasi-monochromatic and spa-
tially coherent but, effectively, also mutually coherent
with one another, so the light in the cavity can be treated
as a single optical (mean) field.?>?* However, recent ex-
perimental and theoretical studies?® 27 have investigated
MI and pattern formation in a different kind of cavity: a
cavity that is longer than the coherence length of the light
circulating in it; that is, the coherence time of the light is
much shorter than the time it takes the light to go once
around the cavity. Hence fields from different cycles are
mutually incoherent, and interference effects between
them do not contribute to the nonlinear index change.
This means that in such a cavity the circulating fields in-
teract only through their intensities. The main difficulty
in analyzing this system results from the fact that the in-
coherence prohibits the use of the mean-field theory com-
monly used with coherent cavities.?>?® In other words,
the recycled fields cannot be represented by a single (av-
eraged) field. Thus a different approach must be taken.?®
That recent study has shown that patterns do form in
such an incoherent cavity, but the pattern-formation pro-
cess entails several new features that are different from
those associated with coherent cavities.?? These fea-
tures, as presented in Ref. 25, are as follows:

1. The modulation depth (visibility) of the pattern ex-
periences a sudden increase above a specific, well-defined
threshold. This threshold is different from the threshold
of coherent cavities, in the sense that it is not affected by
the set of resonant frequencies of the cavity. Therefore
the threshold in our cavity is independent of the so-called
frequency detuning.??*

2. The emerging pattern exhibits spatial line narrow-
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ing as the feedback or the nonlinearity (or both) are in-
creased, closely resembling the temporal line narrowing
in lasers. In lasers, this feature indicates the transition
from wide-spectrum fluorescence to lasing (in a narrow
temporal bandwidth).?®

3. The periodicity of the emerging pattern is identical
to that of the pattern evolving without feedback under the
same parameters. That is, the periodicity of the pattern
does not depend on the boundary conditions of the cavity;
once again, this feature is in contrast with patterns evolv-
ing in coherent cavities.>!

4. The feedback always enhances the visibility of the
pattern, even below threshold. This feature, too, is in
sharp contrast to passive coherent cavities,® in which pat-
terns are always suppressed below the threshold.

These were the main findings of Ref. 25. The theory
presented there was a lowest-order analytic approxima-
tion, which accounted for small feedback values and could
be employed only below the threshold. Its main findings
were corroborated by experiments. Here we analyze the
process of MI in a temporally incoherent cavity both be-
low and above the cavity threshold by using a comprehen-
sive approach. We identify several new features and
compare these findings with experimental results and
with the results of the lowest-order approximation of Ref.
25.

2. FORMULATION OF THE PROBLEM

Let us first describe the optical system under investiga-
tion (as illustrated in Fig. 1). A nonlinear medium with
noninstantaneous response (e.g., a photorefractive mate-
rial or a liquid crystal) is placed inside a low-finesse ring
cavity in which a spatially coherent, quasi-
monochromatic light beam is circulating. The beam is
made wide enough to cover the entire cross section of the
nonlinear medium. The light inside the cavity has a fi-
nite coherence length, with a coherence time 7, that is
much shorter than the time required for one round trip in
the cavity, both of which are much shorter than the re-
sponse time of the nonlinearity. The outcome of this hi-
erarchy of characteristic times (7, < L ,,/¢ < Tmaterial »
where L, is the cavity length and c is the speed of light)
is that in such a cavity, the feedback beams from different
cycles are mutually incoherent with one another. How-
ever, fields from different cycles, albeit uncorrelated, can
interact with one another through the nonlinear element
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Fig. 1. Schematical sketch of the nonlinear (NL) ring cavity sys-
tem.
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in the cavity. The nonlinear medium has an intensity-
dependent nonlinear index change, An, that responds
much slower than the characteristic fluctuation time for
the relative phase between beams from different cycles.
Thus beams from different cycles interact with one an-
other through An = An((I)), where (I) is the optical in-
tensity (energy flux) time-averaged over the response
time 7T aterial Of the nonlinearity. Consequently, An de-
pends on the sum of the intensities of the beams from dif-
ferent cycles but does not depend on interference cross-
terms between them?® (which are averaged out). Thus
the resonant frequencies of our cavity, as well as the rela-
tive phase between beams from different cycles, do not
play any role in the pattern-formation process. Because
the cavity has a low finesse (~1 or lower), the cavity can-
not act as a filter to narrow the temporal spectrum of the
light and increase its coherence length. The feedback
loop in our cavity is diffraction free, which is achieved
through imaging the output face of the nonlinear medium
back to its input face.

The (paraxial) time-independent propagation dynamics
of the light inside the nonlinear medium is governed by
an infinite set of dimensionless®® coupled nonlinear
Schrodinger equations:

(;\I,i i

PV
+
74 9E?

i + An(D)¥; = 0, (1)

where V,(&, ), i = 0,1,2,..., is the envelope of the circu-
lating field from the ith cycle; An(I) is the nonlinear
change in the refractive index, which, as mentioned
above, is a function of the time-averaged intensity I
= (IZ70Wil%) = (27,000 W) = 27,[¥;[% and ¢
= z/zg and ¢ = x/x are the normalized propagation and
transverse coordinates, respectively.?® We emphasize
again that interference terms between different recycled
fields are averaged out. The boundary conditions im-
posed by the cavity are V; (& ¢ =0)=¢eW,(¢ ¢
= L)explia(t)], where &? is the intensity feedback in the
cavity and «a(¢) is a randomly fluctuating phase originat-
ing from the finite coherence length of the light and vary-
ing on a time scale much shorter than the response time
of the crystal.

3. PATTERN FORMATION BELOW
THRESHOLD

First, we investigate analytically the behavior of the sys-
tem below the threshold and at the transition point. We
do this for the self-focusing Kerr-type nonlinearity
[An(I) = I]. However, because any other kind of satu-
rable nonlinearity can be linearized around some mean
intensity,®! we expect to get phenomenologically similar
results for other types of nonlinearity as well.

We start by decomposing each field into a uniform
beam ¢ and a spatially dependent perturbation (&, {) on
it (assuming that the perturbation amplitude is much
smaller than the amplitude of the homogenous back-
ground) and take their mutual propagation as ¥; = [ ¢;
+ ;& Olexp(il’;0). We expand the total intensity in
the limit |¢;] < | 4]
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I= % [y + &l = 2 [wl® + wi* i + gidhi*

| ol?
PO = s 4 2 (T "),
— s ;
(2)
where | |2 is the intensity of the beam entering the cav-

ity, and we have employed the boundary conditions
| i1l® = 2l gul? = 2"V y|® or [ yyl? = &% ol for
the intensity. After substituting the fields and the non-
linearity into Eq. (1), we get

iy P
I+ ) +i— + —
124 &2
[ 0ol? ) )
5 *Z (&> b; + ;™) | (¢ + &) = 0.
— 7
(3)
By collecting leading-order terms only, we have
| ol?
=Ly + ¥ =0, 4)
1-—¢?

from which we find that all the propagation constants are
identical with T; = |,|%/(1 — €2). Substituting this
back into Eq. (3) and taking the first-order terms, we fi-
nally get an infinite set of coupled linearized equations
governing the evolution of the small perturbations in the
cavity:

ap; P
i— +
24 9&?
Normalizing each perturbation by its jointly propagating
uniform fields ¢; = ¢;/i; gives

) ap;
i +
74 9E

+ 2 (U + b = 0. (5)
J

+ 2 [9lP(h + ) =0 (6
J

It is important to note that this set of equations is invari-
ant under an arbitrary change of phase of any of the cir-
culating fields, that is, ¥; = ¢;(1 + ¢;) — ¥, exp(i6), ow-
ing to the fact that interference terms are averaged out to
zero. As a result of this invariance, we can choose all ;,
without the loss of generality, to be real and to omit the
absolute value sign on ;. Using this, we can now write
the boundary conditions for the fields (rather than for the
intensity) as ¢;.,(&, ¢ =0) = ¢,(& L) and o; = e'iy.
This simplification is a result of the direct imaging (out-
put face to input face) in the feedback loop, which main-
tains the relative phase between the dc component and
the perturbation within the same cycle. In other words,
the relative phase between i; and ¢; is deterministic, al-
though fields from different cycles {i, j} are mutually in-
coherent and their relative phase is stochastic. Hence we
may rewrite Eq. (6) in the form
ag; P
i— +
74 9E

+ l/’022 e¥(¢; + ¢*) = 0. (7
j
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Next, we separate the real and imaginary parts of the
perturbations by defining ¢;" = ¢; + &%, ¢; = i(¢;

— ¢;*). Adding and subtracting Eq. (7) and its complex
conjugate yields two coupled sets of equations:
N .
— + + 21//022 82j¢j+ = 0,
¢ 92 J
ag;t P
—_— = =0. (8)
74 9E?

We now define two new, global functions ®(¢, )
= 1/1022i82i§_bi+ and 9(5, g) = ¢022i82i7¢)i7. Multlplylng
each one of the sets in Egs. (8) by #(%¢? and summing
over all ’s reduce Egs. (8) to only two equations, describ-
ing the coupled evolution of ® and O:

90 PP 202

—+ — ® =0,

ag & 1-¢&2
ob 9%
— - —=0. 9)
L 982

We note that, with the definition of ¢;", the total inten-
sity inside the cavity can be written as

o

I = ;T ORI )
- & ;
2
= Yo + «#022 e
1 - &2 i
2
= ; ®(¢, D), (10)
- &

meaning that ®(¢, ) is just the total perturbation of the
intensity, which is the sum of all contributions from all
the recycled fields, added incoherently. In other words,
rather than representing the electric fields circulating in
the cavity by a single mean electric field, we present a glo-
bal intensity field accounting for all cycles. In order to
decouple Eqgs. (9), we first transform to Fourier space
along the transverse coordinate (9%/9¢%2 — —q?2)

90 X 2402 .

— - %D+ o =0,

74 1 — &2
P10 o
— +¢%6 =0, 11
P q (11)

where d(q, ) = [, (& Dexp(—igHdé and O(g, )
= [7.0(¢ Dexp(—igddé are the Fourier transforms of
® and O, respectively, and g is the perturbation wave
number (i.e., the momentum in the transverse plane).
We then take the second derivative of ® with respect to ¢,
which is, according to Egs. (11), ??®/9(%2 = —q%(90/3{) or

Pd 2( 2,2

Plg 1- g2
where g2(q) = q?*[2¢%/(1 — €2) — gq?]isreal. Equation
(12) has exponentially growing/decaying or oscillatory so-
lutions, depending on the sign of g2(g). To observe some
pattern at the output face of the nonlinear medium, we

b = g2d, (12)

_q2
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Fig. 2. (a) Calculated exponential gain factor g(q) and (b) spa-
tial spectral density of the perturbation at the output face of the
nonlinear medium for different intensity feedback values below
threshold, based on the analytic solution (calculated with i,
= land L = 1).

require that g(g) (denoting the gain of each spatial fre-
quency) be real and positive; hence small perturbations at
the input will be amplified along propagation. Assuming
such growing perturbations, that is, those with real g(q)
values, the general solutions for the global fields are

d(g, ) = Aexp(g{) + Bexp(—g{),

N ig
O(q, §) = —[Aexp(gl) — Bexp(—g{)]. (13)
q

It can be shown that the boundary conditions translate
into the global fields as ®(q, ¢ = 0) = £2d(q, { = L)
+ sand O(q, { = 0) = £26(q, { = L) + y, where 5 (v)
is the real (imaginary) part of the perturbation on the in-
coming beam. With these boundary conditions, we can
solve for the coefficients in Egs. (13). We find that the so-
lution for the exponentially growing part of the perturba-
tion, at the output face of the medium, is

. exp[ g(q)L]
®(q, L) = 5 ,
1 — e”exp[g(q)L]
21//02 1/2
glq) = Iql( il (14)
1—¢

This form is identical to the solution presented in Ref. 25;
however, the exponential gain factor has been corrected,
as the intensity of the incoming beam is now multiplied
by 1/(1 — &2), which is identified with the sum of inten-
sities of all the cycles in the cavity. Notice that all the
above expressions depend on the intensity feedback &2
and not on the field feedback directly, and that it is insen-
sitive to the feedback phase delay. This results from the
fact that the cavity is incoherent and interference terms
do not contribute to the interplay between different
cycles.

Examining expression (14), which is the spectral den-
sity of the outgoing perturbation, reveals several facts.
These are illustrated in Figs. 2 and 3 (calculated with the
parameters ¥, = 1 and L = 1):

1. Figure 2 shows the exponential gain factor, g(q),
and the spectral density of the perturbations at the out-
put face of the medium, <i>(q, L) (on a logarithmic scale),
for different values of the intensity feedback. When the
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feedback is zero (no cavity), there are exponentially grow-
ing perturbations with their spectral densities centered
around q . = . However, as one starts to increase the
feedback, the spatial frequency with the highest exponen-
tial gain factor is shifted according to @G«
= yy/\1 — 2. Hence the dominant spatial frequency in
the cavity [which is identical to the one with the highest
gain factor g(q)] does depend on the boundary conditions,
in contrast to the result of the lowest-order (small feed-
back) theory.?? It is important to note that the main ef-
fect of creating a cavity (by closing a feedback loop) is the
dependence of the total amplification of the spectral den-
sity on the feedback in the cavity. The other effect,
namely, the increased nonlinearity due to increased inten-
sity (resulting from the feedback) is relatively minor.
That is, the amplification originates mainly from recy-
cling the perturbation in the cavity and the interplay be-
tween different cycles.

2. At some definite threshold value of the cavity feed-
back, which we denote as &y,, the amplitude of the per-
turbation at the wave number with the highest gain fac-
tor (solid curve in Fig. 3) diverges. This threshold occurs
at the point at which the exponential gain induced by the
nonlinearity exp(gL) exactly balances the intensity losses
in the cavity (which are quantified here by a loss param-
eter 1/s2). At this critical feedback value and above it,
the analytic linear stability analysis presented here is no
longer valid, and, as will be shown later, a periodic pat-
tern with modulation depth independent of the initial
noise is formed, in contrast to the situation below the
threshold.

3. The spectral width of the perturbation®? (dashed
curve in Fig. 3) decreases monotonically, meaning that
the intensity pattern is becoming more ordered and closer
to a perfectly periodic structure as the feedback is in-
creased. Also, the amplitude of the perturbation (or the
modulation depth) increases monotonically as the feed-
back is increased.

It is interesting to note that, after our solving for A and
B in Egs. (13), the solution for the total intensity pertur-
bation (iD(g” ) can be used to obtain a separate equation for
each ¢,

100 0.4
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Fig. 3. Amplitude of the dominant spatial frequency at the out-
put of the nonlinear medium (solid curve) and the line narrowing
of the spatial bandwidth Ag (dashed curve) as a function of the
feedback in the cavity below the threshold, based on the analytic
solution. The cavity threshold is marked by an arrow (calcu-
lated with g = 1 and L = 1).
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(92&51_-%—

R q'$;" = 2q*[A exp(g{) + Bexp(—g)].

(15)

This is an inhomogeneous ordinary deferential equation
with an exponential particular solution proportional to A
and B, which indicates that all the cycles are diverging
collectively. In addition, it also has an oscillatory solution,
indicating that part of the perturbation in each separate
field is coupled into an oscillating mode exp(*+ig?). How-
ever, as was shown above, these (phase-dependent) oscil-
lations cancel out when summed over all cycles and do not
contribute to the intensity pattern evolving in the cavity.

4. PATTERN FORMATION ABOVE
THRESHOLD

In order to reveal and understand the behavior of the sys-
tem above the threshold, where the above expressions do
not hold, we simulate the propagation of light inside the
cavity under the full nonlinear equations [Eq. (1)] by us-
ing a standard beam propagation method (BPM). We use
the method iteratively as follows: We start with the in-
coming beam ¥ ((¢, { = 0), which is held at the input as
a uniform beam (whose intensity we denote by I,
= ¢2). We introduce weak white noise (of a random
amplitude and phase) on top of i, and calculate its non-
linear propagation for a distance { = L (output face). We
then add the second cycle by wusing V(& ¢ =0)
= &gWy(& ¢ = L) and calculate their coupled propaga-
tion through the nonlinear medium. Then V,(¢, £ = 0)
is corrected, by use of the new solution for V(& ¢
= L), a third cycle is added, and so forth; we add another
field at each iteration and update the input of the previ-
ous fields by using the boundary conditions V¥; (¢, ¢
=0) =eWV,(& ¢ =L). We add up fields up to feedback
value of ¢! < 10°%, where i is the cycle number, and con-
tinue the iterative collective propagation of these cycles
until the set of {¥,(&, {)} converges [we arbitrarily define
the code convergence when the relative change in the
(output face) power spectrum in the particular iteration is
smaller than 0.01%].

The incoherence of the light is manifested in the omis-
sion of interference terms from the expression describing
the intensity. In the transverse dimension we use 2048
sampling points over a (dimensionless) width of 400,
meaning that the resolution in % space is A2 = 0.015 and
the maximal spatial frequency is % ., = 16.08.

First, we use the Kerr-type nonlinearity [An(I) = I].
We set I, = 1 for the mean intensity of the incoming
beam (which sets the strength of the nonlinearity) and
L = 2 for the nonlinear propagation distance. Figure 4
shows the total intensity distribution (normalized by the
mean intensity in the cavity) at the output face of the me-
dium. When there is no feedback, the intensity remains
almost uniform, and the fluctuations are weak. When we
set the intensity feedback to 10%, slightly below thresh-
old, the instability is more pronounced, and a quasi-
periodic low-visibility intensity modulation emerges. In-
creasing the feedback value to 2 = 11%, slightly above
threshold, results in a sudden increase of the modulation
depth of the intensity pattern, which assumes a more pro-
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Fig. 4. Typical results of the numerical simulation with Kerr
nonlinearity, showing the intensity pattern at the output of the
nonlinear medium (normalized by the mean intensity in the cav-
ity) without feedback (thin curve), slightly below the cavity
threshold (thick curve), and slightly above the threshold (dashed
curve), demonstrating the sudden increase in the modulation
depth.

nounced periodicity and becomes highly regular. This
sudden change clearly indicates that a cavity threshold
had been passed and the instability went through a tran-
sition in its nature. Notice that the analytically calcu-
lated value of the threshold intensity feedback [found by
equating the denominator of expression (14) to zero with
the above parameters] is 10.67%, in accordance with the
results of the numerical simulation.

In order to study and quantify the behavior of the cav-
ity as the feedback is varied, we perform the numerical
simulations with small increments of the cavity feedback
under the same parameters (length and intensity) as in
Fig. 4. We perform the simulations with three strengths
of initial noise (0.2%, 1%, and 5% of the mean intensity).
As an order parameter, we choose \20;/(I), where o
= {J[I(x) — (I)]?dx}"? is the standard deviation of the
intensity and (I) is the average intensity, as a measure
for the calculated visibility of the emerging pattern. This
parameter is related to the spatial correlation function
and is more suitable for statistical calculations. It re-
duces to the usual expression for the visibility [(.x
— I/ pax + Inin)] when the intensity pattern is per-
fectly sinusoidal. The results are presented in Fig. 5.
Generally, below the cavity threshold (also shown magni-
fied in the inset), the perturbations are weakly amplified,
and their (small) amplitude is proportional to the initial
noise strength. As the cavity threshold is approached,
perturbations with a particular spatial frequency start di-
verging, as predicted by the theoretical model. However,
above threshold, the divergence of the perturbations is ar-
rested by the nonlinearity, resulting in periodic perturba-
tions with finite amplitude depending only on the feed-
back, and completely independent of the noise entering
the cavity. This is a typical behavior of a second-order
phase transition (e.g., laser action®®)—as the control pa-
rameter (feedback in our case, pump intensity or tem-
perature in other examples) is varied, the fluctuations of
the disordered system diverge toward a critical value of
the control parameter. As this critical value is passed,
the system spontaneously becomes organized, and the or-
der parameter relaxes to some finite value that is inher-
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ent to the system and depends on the system’s param-
eters alone.

Another characteristic of the state of the system is the
bandwidth of the spatial power spectrum of the emerging
perturbation. Figure 6 shows the spectral width®? as a
function of the intensity feedback £2. Without feedback,
the width of the spatial spectrum is relatively high (~0.4)
and corresponds to the width of the natural gain
[exp(gL)] resulting from the nonlinearity. When the
feedback is increased, the width of the spectrum de-
creases monotonically toward the cavity threshold. The
dependence of the bandwidth on feedback in this region,
predicted by the analytical model presented above, can be
calculated with expression (14) (solid curve in Fig. 6).
This indicates that the incoherent cavity is well described
by our analytical model. Above the threshold (which is
designated by an inflection point of the curve), there is a
further narrowing of the bandwidth until some minimal
width is approached. This again indicates a behavior
similar to that of a laser, with the transverse direction re-
placing the longitudinal (or the temporal) direction. In
lasers, line narrowing occurs at the transition from spon-
taneous emission (wide temporal spectrum) to lasing
(narrowband with a minimal width known as the
Schawlow—Townes limit?®), as the pump is increased. In

LT
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Fig. 5. Calculated visibility versus intensity feedback for the
numerical simulations with the Kerr nonlinearity, with different
strengths of initial noise, showing the transition from low-
visibility perturbations (below threshold) to a highly modulated
intensity pattern (above threshold). The inset shows the mag-
nification of the region below the cavity threshold.

0.4+

<1 0.4 * Numerics

% — Analytic
0.2

£

8

m g0 o © b [J

T3 O UL L L L L L

= 0 0.1 0.2

o Intensity Feedback €

Fig. 6. Bandwidth of the perturbations’ spatial spectrum versus
intensity feedback calculated with the numerical simulation
(circles) below and above the threshold, and with the analytic so-
lution (solid curve) below the cavity threshold for Kerr nonlinear-
ity, showing line narrowing as the feedback is increased.
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our case, the transition is between the wideband amplifi-
cation of spatial perturbations and the emergence of a
spatially periodic pattern with a definite periodicity.

Further increase of the feedback brings up high-order
nonlinear effects, generating higher harmonics and lead-
ing, by their interplay, to some broadening of the spec-
trum. At values of the intensity feedback that are larger
than ~25%, our numerical code does not converge. This
could possibly indicate a secondary instability. However,
to determine whether the instability is indeed physical
or merely a numerical artifact, further studies are re-
quired, with computational power exceeding our current
capabilities.

5. EXPERIMENTAL RESULTS—SCREENING
NONLINEARITY

In this section we compare our results of the theoretical
analysis with the experimental results presented in Ref.
25. However, some modification of the theory needs to be
made, since the experiment employed a photorefractive
strontium barium niobate (SBN) crystal exhibiting the
screening nonlinearity,3*3¢ which is different from the
Kerr nonlinearity considered above. The explicit form of
this nonlinearity is discussed in Appendix A. Also, the
screening nonlinearity necessitates the use of a uniform,
ordinarily polarized, background beam. The nonlinear-
ity is affected by the intensity ratio between the nonlin-
early propagating beam (extraordinary polarization) and
this background beam.?*™3¢ Therefore, in the experi-
ment, the background beam is also recycled in the cavity
to keep the nonlinearity strength independent of the feed-
back. In the numerical simulation we use Eq. (A2) of Ap-
pendix A for An, calculating the integral numerically at
each step. For the analytical part, the approximate ex-
pression (A3) is used. Performing the linearization of the
nonlinear Schrodinger equations in the same manner as
in Appendix A, while taking into account the boundary
conditions and the fact that the total background inten-
sity equals the intensity of the incoming background
beam I, multiplied by a factor 1/(1 — &2), results in a set
of equations describing the evolution of the perturbations:

i P ) tho” i = =

/ — N — ] . R

it e e 8)1+¢02§8(¢’+¢’) 0,
(16)

where 2 is the mean intensity of the incoming beam in
units of I, and ¢; is defined as before. This set of equa-
tions is identical in form to Eq. (7), differing only in the
pump parameter, which is here (1 — e[ ¢%/(1 + 2]
instead of ¢y2. This obviously changes only the exponen-
tial gain factor, which becomes

2,2 )
glq) = Iqu(—1 A - q2> . a7
0

This result is independent of the feedback in the cavity, as
intended. The maximal gain factor g ., = /(1 + %>
occurs for the spatial frequency g = [ /(1 + $2]Y2,
and hence this spatial frequency will dominate the MI
process in the cavity. Substituting this into the expres-
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Fig. 7. Comparisons between the modulation depth calculated
for the numerical simulation (circles) and experimental results
(squares) with the screening nonlinearity. The cavity threshold
is marked by an arrow.
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Fig. 8. Bandwidth of the perturbations’ spatial spectrum versus
intensity feedback in the (a) numerical simulation and (b) experi-
mental results taken from Ref. 25, marked by circles. The solid
curves in both figures show the theoretical dependence of the
bandwidth based on the analytic solution. The dashed curve
above the threshold in (b) is a guide to the eye.

sion for the spectral density of the perturbation [expres-
sion (14)] gives the feedback threshold value of

, o”
e = exp f—ZL
1+ ¢

We perform the numerical simulations under the same
parameters used in the experiment: A 488-nm laser
beam, with intensity ratio (signal/background) of 2.1, was
sent into the cavity, and the nonlinear element was a
5.5-mm (2.87 in dimensionless units®®)-long photorefrac-
tive SBN(60) crystal, with refractive index n = 2.36 and
electro-optic coefficient 180 pm/V, biased by an external
electric field of 340 V/em. Substituting these parameters
into the expression for the feedback threshold based on
the analytic calculation above yields &,2 = 14.3%. Fig-
ure 7 shows the calculated visibility for the numerical
simulations (marked by circles) compared with experi-
mental results (squares) as a function of the intensity
feedback in the cavity. There are no fitting parameters.
For both cases, the transition occurs at an intensity feed-
back of ~14%, as predicted by our linear stability analy-
sis, and the trend of the curves is similar. However, be-
cause the initial noise in the experiment was much
stronger than in the simulation, the visibility even with-
out any feedback is higher, and the transition is smoother.
As mentioned above, beyond the threshold, the visibility
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of the pattern should not depend on the initial noise, and,
indeed, in that region the numerical simulation gives vis-
ibility values similar to the experimental results. Gener-
ally, the numerical simulation here gives similar behavior
to that with the Kerr nonlinearity.

Next, we measure the spatial bandwidth of the pertur-
bations as the feedback is increased, which is marked by
circles in Fig. 8(a). We also compare the results with the
analytical calculation (solid curve) and find again that our
model describes well the cavity below threshold. Figure
8(b) compares the analytic calculation of the bandwidth
with the experimental results presented in Ref. 25, both
of which show similar line narrowing below the threshold.
Again, the initial noise in the experiments is high; hence
the initial width of the power spectrum is larger in the ex-
periment [Fig. 8(b)] than in the numerical calculations
[Fig. 8(a)]. Therefore, when coming to compare the ana-
Iytic curves with the numerics and with the experiments,
we multiplied each of these analytic curves by a different
constant factor, to match the numerical and analytical
values [Fig. 8(a)] and the experimental and analytical val-
ues [Fig. 8(b)] for the spatial bandwidth of the pattern at
zero feedback. With this single fitting parameter, the
analytic curves match nicely the numerical [Fig. 8(a)l and
experimental [Fig. 8(b)] curves, coinciding for all values of
bandwidth as a function of feedback, including the feed-
back threshold value. Above the threshold, the experi-
ment and the numerical simulation exhibit the same be-
havior, showing further line narrowing as the feedback is
increased. However, at high values of the feedback, the
numerical results show some broadening of the spatial
spectrum, as in the Kerr case (Fig. 6). As another com-
parison, the dominant spatial frequency predicted by our
analytic calculation is .. = [2.1/(1 + 2.1)]Y2 = 0.82,
which is 23 lines/mm when transformed back into real
dimensions.®® This value was verified by both the nu-
merical simulations (23 = 1 lines/mm) and the experi-
mental results (26 = 3 lines/mm) and was found to be
within the error limits.

6. CONCLUSION

We have presented a theoretical study of modulation in-
stability and pattern formation in a nonlinear cavity with
temporally incoherent feedback. We have demonstrated
the features of this cavity, such as a threshold above
which the instability changes its nature and a high-
visibility pattern forms. Similar to the temporal behav-
ior of laser resonators, line narrowing of the spatial
(transverse) spectrum occurs as the feedback is increased.
Indeed, the behavior near the threshold has much in com-
mon with second-order phase transitions. However, the
incoherent cavity has no resonant frequencies, so there is
no frequency-detuning effect near transition, as in the co-
herent case. We have analyzed the dynamics of the sys-
tem below threshold, both numerically and by using lin-
ear perturbation theory, for both Kerr and saturable
nonlinearities. Above threshold, we found that the
modulation amplitude depends only on feedback and is
independent of the initial noise level in the system. Both
analytics and numerics give the same cavity threshold
and line-narrowing behavior, which agree (within error
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limits) with the experimental observations reported in
Ref. 25. Which one of the physical assumptions breaks
down above the cavity threshold is still an open question,
and an analytical description of this cavity above the
threshold as well as other properties of this phase transi-
tion, is yet to be sought for. Also, it is interesting to ex-
amine cases of intermediate coherence length, when there
is coherent interaction between some finite number of
cycles. Finally, the direct continuation of this paper is
the investigation of a spatially and temporally incoherent
cavity as was first analytically studied (below the thresh-
old) in Ref. 26 and also later experimentally.?”

APPENDIX A

In this appendix we rederive the form of the nonlinearity
involved in the MI process in a uniformly illuminated,
electrically biased, photorefractive crystal, as used in the
experiment of Ref. 25.

Consider a biased photorefractive crystal illuminated
by an intensity distribution I(x) of an extraordinarily po-
larized electromagnetic field and a uniform (ordinarily po-
larized) background intensity I,. To the lowest order
and for low intensities, the total dc electric field inside the
material is given by343?

E(x) = 7 m, (A1)

where [ is the intensity distribution in units of I, [ is the
transverse length of the crystal, V is the applied voltage,

and
1 (0 dx \ 7!
77=<7f01+1) '

Through the electro-optic effect, this modulated electric
field induces a spatially modulated change in the refrac-
tive index, given by

1 (¢ dx
An(x) = —An, 7f1+1
0

-1

(A2)

(1+1)°

with Ang = $n,%r(V/l), where n, is the background re-
fractive index and r.y is the effective electro-optic coeffi-
cient. Notice that this form is applicable only to a one-
dimensional intensity distribution and neglects higher-
order effects, such as diffusion fields.?®

In order to understand the nature of this nonlinearity
and its contribution to the MI process, let us assume an
almost uniform intensity distribution with small oscilla-
tions around a mean intensity I,. In this case, the term
in the integral of Eq. (A2) can be approximated as con-
stant, and the nonlinear change in the refractive index
takes a simpler form:

1+ 1,

An(x) = —An01+—1(x).

(A3)

We now examine the onset of the instability by substi-
tuting An(x) into the dimensionless nonlinear wave equa-
tion:
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dav  av 1+1,
i— 4+ —— ——— ¥ =0, (A4)
i 4 1+ w2

where { and ¢ are the propagation and transverse coordi-
nates, respectively,®® and W(¢, 0) is the slowly varying en-
velope of the electromagnetic field inside the material,
with |¥|? as the light intensity. We linearize Eq. (A4)
and find the dynamics of the small perturbations in the
usual way: We first choose the ansatz ¥ = [y,
+ 1(&, O]expil'), where ¢, is the square root of the
mean intensity I, and chosen, without the loss of gener-
ality, to be real; ¢; describes the propagating perturba-
tion; and I' is their mutual propagation constant. Substi-
tuting this into Eq. (A4), expanding up to first order in
1, and collecting terms of the same order separately, we
find the following:

1. T' = —1, reflecting the fact that in a uniformly illu-
minated photorefractive material the space-charge field is
not modulated. Therefore the internal field is just the
applied field (V/l), and the change in the wave number
(propagation constant) comes through the electro-optic ef-
fect alone [in other words, An(x) = —Any, to first order].

2. The evolution of the propagating perturbation in-
side the photorefractive medium is governed by

dyy ) d?y, . o (Bet B = 0. (A5)
1 — S E— = 0.
d¢ dée? 1+ g2 ' !

This linearized equation describes the propagation of
with a source term, pumped by ¢, counteracting the dif-
fraction term and enhancing the perturbation along
propagation.

Comparing this result with Kerr nonlinearity, we find
that the pump strength, given in the Kerr medium by
o2, is replaced here by ¢%/(1 + ,2). This form is of
saturable nature, its maximum value being 1, meaning
that the growth rate of the perturbations will saturate in
high signal-to-background ratios. However, the nonlin-
earity itself does not saturate, resembling in nature to
that occurring with dark photorefractive solitons®*
(rather than that found in bright photorefractive soli-
tons). This results from the fact that increasing I, en-
hances the electric photocurrent going through the crys-
tal. The outcome of the linear stability analysis
presented here suggests that the MI process under the
photorefractive screening nonlinearity has an upper
bound to its strength. However, the nonlinear gain is
monotonically increasing with intensity ratio, and hence
working at high intensity ratios does not suppress MI, as
was previously suggested (e.g., Ref. 31).
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