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Holographic solitons
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We propose a new kind of an optical spatial soliton: the holographic soliton. This soliton consists of two
mutually coherent field components that interfere, induce a periodic change in the refractive index, and si-
multaneously are Bragg diffracted from the grating. Holographic solitons are formed when the broadening
tendency of diffraction is balanced by phase modulation that is due to Bragg diffraction from the induced grat-
ing. Holographic solitons are solely supported by cross-phase modulation arising from the induced grating,
not involving self-phase modulation at all. © 2002 Optical Society of America
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Optical spatial solitons are supported by many dif-
ferent nonlinear mechanisms,1 which generally can
be classified into two generic types. The first type
is the self-phase-modulation self-focusing mechanism
through which an optical beam modifies the refractive
index and induces an effective positive lens; i.e., the
refractive index in the center of the beam is larger
than at the beam’s margins. The refractive-index
structure of the medium then resembles that of a
graded-index waveguide. When the optical beam
that has induced the waveguide is also a guided mode
of the waveguide that it has induced, the beam’s
propagation becomes stationary.2 The vast major-
ity of the physical phenomena that support optical
solitons belong to this self-focusing type, which has
been implemented for observation of solitons in optical
Kerr media,3,4 atom vapor,5,6 photorefractive7,8 and
photovoltaic9 crystals, thermal nonlinearities,10 liquid
crystals,11 and more. The second mechanism that
can support spatial solitons arises from the nonlinear
phase coupling that results from symmetric energy ex-
change between two or more mutually coherent beams.
Each beam continuously loses some of its energy and
regains the same amount, such that the net power
in each beam is conserved. In this interaction, the
field that constitutes the acquired energy (to each of
the beams) is phase retarded relative to the primary
field of each beam. Thus, as the acquired field is
added to the primary field, it effectively slows the
phase velocity of the beam. Hence, if the interaction
occurs in such a way that the effect is more intense
at the center of the beam (or for the lowest spatial
frequencies of the beam), then it reduces or eliminates
the broadening effects of diffraction. Currently, the
only known soliton that is supported solely by such a
mechanism is the quadratic soliton, which consists of
multifrequency beams.12,13 However, phase coupling
between two mutually coherent beams can also be
established through a grating in the refractive index
that is induced (in real time) by interference between
the beams. In this case the beams are coupled
through Bragg ref lections. Each beam is Bragg
ref lected and coherently added into the other beam.
This can lead to focusing of narrow beams when the
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ref lected beams are p�2 phase retarded with respect
to the primary beams and the index change that gives
rise to the grating is an increasing function of the
optical intensity. Inasmuch as the focusing effect
results from the induced index grating, we termed the
effect holographic focusing.14

Holographic focusing was most probably present
in the pioneering f irst experimental demonstration
of spatial Kerr solitons,3 which utilized interference
between two beams to arrest transverse instability.
Effects related to holographic focusing have been
reported by Vaupel et al.,15,16 who demonstrated mu-
tual focusing/defocusing of two beams with slightly
different frequencies in a photorefractive crystal.
Holographic focusing was also recently predicted
in plasma.17 Recently a vector soliton composed of
counterpropagating coherent fields that were partly
supported by holographic focusing was experimentally
demonstrated.18 Here we propose a soliton for which
the focusing mechanism is solely holographic focusing,
that is, a holographic soliton that does not rely on
self-phase-modulation self-focusing but exists only
by virtue of the induced periodic modulation of the
refractive index.

A prerequisite for obtaining holographic focusing is
that the induced index grating be in phase with the
intensity interference grating. When the index grat-
ing is p shifted from the interference grating then
the grating leads to holographic defocusing, which one
can use to obtain dark holographic solitons. But, if
the index grating is 6p�2 phase shifted with respect
to the intensity grating, the interaction will yield an
asymmetric (i.e., unidirectional) energy exchange be-
tween the beams,19 so it fundamentally cannot sup-
port solitons. Thus the p�2 phase-shifted component
of the grating must be minimized; otherwise, if the rate
of asymmetric energy exchange is signif icant for the
propagation distance in the medium, this component
will destroy the solitons.

Consider the schematic shown in Fig. 1. Holo-
graphic solitons necessitate that the nonlinearity be
anisotropic, such that self-focusing of each beam sepa-
rately is eliminated by use of vectorial (anisotropic)
effects. For example, assume that the medium is a
© 2002 Optical Society of America
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Fig. 1. Schematic of a holographic soliton in a photore-
fractive medium.

photorefractive crystal of 4mm point group symmetry
(e.g., SBN) with its crystalline c axis along y, which is
also the direction of the applied f ield. Two mutually
coherent beams with their polarization in the yz
plane (taking advantage of the large electro-optic
coeff icient r33) are focused at the input face of the
medium. The intensity of each beam is uniform
in y. The input beams, however, are narrow in x,
and in the absence of nonlinearity they are free to
diffract in x. In this configuration, with the electric
field applied normal to the narrow direction of the
beam, the photorefractive screening nonlinearity does
not induce any waveguiding structure in x. Thus,
in this configuration, there are no focusing effects
in x induced by the photorefractive screening non-
linearity. However, the two beams interact (through
the grating that they form), focusing together, and
form a holographic soliton. Let the optical f ield
be written as E � A exp�i�k cos�u�z 1 k sin�u�y 2

vt�� � ŷ cos�u� 1 ẑ sin�u�� 1 B exp�i�k cos�u�z 2

k sin�u�y 2 vt�� � ŷ cos�u� 1 ẑ sin�u�� 1 c.c., where A
and B are the complex envelope amplitudes of the
beams, the wave vector is k � vn0�c, v is the temporal
frequency, c is the speed of light in vacuum, n0 is the
linear index of refraction, and u is the angle between
the k vector of each beam and the z axis �u ,, 1�.
To within a proportionality factor, the intensity is
I ~ jEj2 � jAj2 1 jBj2 1 �A�B exp�22ik sin�u�y� 1

B�A exp�2ik sin�u�y��cos�2u�. The refractive-index
change in this configuration is given by

Dn � Dn0
AB� exp�2ik sin�u�y� 1 c.c.

jAj2 1 jBj2 1 IB
cos�2u� , (1)

where IB is the uniformly illuminated background
intensity (or background irradiance) and Dn0 is a
complex factor that depends on the specif ic material
parameters and the applied voltage.20 In what fol-
lows, we assume that Dn0 is real, that is, that the
index grating is 0 or p phase shifted relative to the
intensity interference grating.21 To study the time-
independent propagation of the beams, we substi-
tute E into the Helmholtz equation. Assuming that
jDnj ,, n0 [such that n2 � �n0 1 Dn�2 � n0

2 1 2n0Dn0�
and that u ,, 1 (the paraxial approximation), select-
ing synchronous terms and seeking solutions that do
not depend on y lead to
≠2A
≠x2 1 2ik cos�u�
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3
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We seek stationary symmetric intensity profiles
for which only the phase is allowed to evolve with
propagation. Thus we substitute into Eqs. (2)
solutions of the form A � B � u�j�exp�ibz �

p
IB ,

where z � kjDn0jcos�2u�z��n0 cos�u�� and j �
�2k2jDn0jcos�2u��n0�1�2x are dimensionless inde-
pendent variables, and obtain

u00 2 bu 6
juj2u

2juj2 1 1
� 0 , (3)

where the plus (minus) means that Dn0 . 0 �,0� and
the prime stands for the derivative with respect to
variable j. Using quadrature, we obtain the first in-
tegral of Eq. (3):

u00�j�2 2 u00�0�2 2 b�u�j�2 2 u�0�2� 6 �u�j�2 2 u�0�2��

2 7 ln��1 1 2u�j�2���1 1 2u�0�2���4 � 0 . (4)

We are now in a position to solve Eq. (3) subject to the
boundary conditions of bright and dark solitons.

Bright solitons: For lowest-order bright solitons
one requires as boundary conditions that (i) u�`� �
u0�`� � u00�`� � 0, (ii) u0�0� � 0, and (iii) u00�0��u�0� , 0.
Condition (i) ensures the decay of the f ield and all
its derivatives far from j � 0, and conditions (ii)
and (iii) ensure a local maximum at j � 0. From
condition (iii) we find that bright solitons exist only
for Dn0 . 0. Taking the limit j ! ` in Eq. (4)
and applying the boundary conditions lead to
b � 1�2 2 ln�1 1 2u0

2��4u0
2 , where u0 	 u�0�. We

numerically integrate Eq. (3) for various values of u0
and obtain the waveforms shown in Fig. 2a.

Dark solitons: For dark solitons the boundary con-
ditions are that (i) u�`� � u`, (ii) u0�`� � u00�`� � 0,
(iii) u�0� � 0, and (iv) there be a real (nonzero) u0�0�.
The f irst two conditions ensure a constant value of the
field far from j � 0; the last condition eliminates so-
lutions that are periodic in j. From condition (iii) we
find that dark solitons exist only for Dn0 , 0. Taking
the limit j ! ` in Eq. (4) and applying the boundary
conditions lead to b � �2u`

2�2u`
2 1 1�, which is sub-

stituted into Eq. (3) to yield

u0�0�2 � u`
2�u`

2��2u`
2 1 1� 2 1�2� 1 ln�2u`

2 1 1��4 .

We numerically integrate Eq. (3) for various values of
u` and obtain the waveforms shown in Fig. 2b.

Figure 2c shows the existence curves of bright and
dark holographic solitons and exemplifies the rela-
tionship among the peak amplitudes of these solitons,
the nonlinearity required for their support, and their



November 15, 2002 / Vol. 27, No. 22 / OPTICS LETTERS 2033
Fig. 2. a, Normalized wave functions of the bright holo-
graphic soliton versus transverse coordinate j for several
values of the peak amplitude �u0�. b, Normalized wave
functions of the dark holographic soliton versus j for sev-
eral values of the amplitude at infinity �u`�. c, FWHM of
the intensity of bright and dark holographic soliton versus
u0 and u`, respectively.

width. Notice that, given the peak amplitude and
width, there is only one value of Dn0 that gives rise
to solitons. This situation is similar to that of almost
all other known types of soliton in any medium1; based
on past experience with spatial solitons, this is not a
limiting factor because the solitons dynamically adjust
their widths and peak amplitudes to fit this value.

As we have just explained, holographic solitons
do not rely on self-focusing but on Bragg scattering
from the grating induced by its f ield components.
There are, however, several other distinct differences
between holographic solitons and spatial solitons
that result from self-phase-modulation. First, the
self-phase-modulation self-focusing is insensitive to v
(or is weakly dependent on it), whereas holographic
focusing and solitons occur only for those beams that
induced the grating. A second difference between the
two focusing mechanisms has to do with their response
times. The nonlinear response time, t, characterizes
the time that it takes Dn to respond to intensity varia-
tions, and it can range from 
100 fs in semiconductors
(the dephasing time) to many seconds in photorefrac-
tive, thermal, and other nonlinearities associated with
transport (of charge, temperature, etc.). The constant
t is also the response time of the conventional focusing
mechanism. Holographic focusing has two different
characteristic response times. The first is the forma-
tion time of the grating, which is t. The second is the
switching time: the response time for holographic
focusing of one of the beams due to blocking of the
second beam, once the Dn grating is already set.
This response is always (irrespective of t) extremely
fast ��the dephasing time), because the holographic
focusing on the f irst beam results from the phase-
delayed Bragg-ref lected portion of the second beam.
Thus, once Dn is set, one can instantaneously turn
off (or on) the holographic focusing effect on the
forward beam by blocking (or unblocking) the back-
ward beam. This means that holographic spatial
solitons can be switched on and off extremely fast,
even in slow nonlinear media. Finally, we note
that holographic solitons can be generated in any
nonlinear medium in which conventional self-focusing
can be eliminated but grating effects can be large.
Photorefractives are natural candidates to observe
such solitons, but holographic solitons can exist
in liquid crystals, polymers, and other media as well.

In conclusion, we have proposed spatial solitons that
rely solely on holographic focusing and have suggested
an experimental conf iguration with which to obtain
them. The holographic soliton requires Bragg match-
ing, although it is possible that a phase mismatch will
also lead to soliton phenomena, as it does for quadratic
solitons.
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