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We study the propagation of partially coherent (random-phase) waves in
nonlinear periodic lattices. The dynamics in these systems is governed by
the threefold interplay between the nonlinearity, the lattice properties, and the
statistical (coherence) properties of the waves. Such dynamic interplay is
reflected in the characteristic properties of nonlinear wave phenomena (e.g.,
solitons) in these systems. While the propagation of partially coherent waves
in nonlinear periodic systems is a universal problem, we analyze it in the
context of nonlinear photonic lattices, where recent experiments have proven
their existence.

1. Introduction

Nonlinear periodic systems are frequently encountered in nature. Examples
may be found in biology [1], solid-state physics [2], nonlinear optics [3],
Josephson ladders [4], Bose–Einstein condensates (BEC) [5], etc. The behavior
of waves in periodic systems is driven by the interference (e.g., interference is
responsible for the existence of bands and band gaps in the spectra of the
linear periodic systems [6, 7]), which crucially depends on the coherence of
waves. This fact implies that waves with only partial coherence can exhibit
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different features than fully coherent waves in nonlinear periodic systems.
However, in spite of the considerable attention that was given to the problem
of wave propagation in nonlinear periodic lattices [3, 8–49], the propagation
of partially coherent waves (PCWs) in such systems has not been studied until
recently [37, 45, 46]. This direction of research is further motivated by the
fact that most waves encountered in nature are only partially coherent. Partial
coherence of waves becomes important when fluctuations (thermal, quantum,
or other) reduce the correlation distances to magnitudes comparable with the
characteristic length scales of the periodic system, e.g., the lattice spacing. In
this case, the dynamics is governed by the threefold interplay between the
statistical (coherence) properties of the waves, the lattice periodicity, and
the nonlinearity. The consequences of this interplay are observed in the
characteristic features of partially coherent solitons in nonlinear periodic
lattices [37, 45].

Here we present a comprehensive theoretical [37] and experimental [45]
study of partially coherent lattice solitons, also called random-phase lattice
solitons (RPLSs). These solitons exist when linear transport (diffraction) in
the lattice is balanced by nonlinear self-focusing (or defocusing) effects.
The properties of such solitons, namely, their intensity structure, statistical
(coherence) properties, and spatial power spectra, all conform to the lattice
periodicity [37, 45]. Perhaps the most interesting feature of the RPLSs is found
in the momentum space (k-space), which is partitioned into Brillouin zones
(BZ) due to the periodicity of the system [6, 7]. The Floquet–Bloch power
spectrum of RPLSs is multihumped with humps being located in the normal
(anomalous) diffraction regions of the BZs in the case of a self-focusing
(defocusing, respectively) nonlinearity. The experiment of [45] has shown that
an incoherent wavepacket with a simple bell-shaped intensity structure and a
bell-shaped Fourier power spectrum may, under proper nonlinear conditions,
evolve into a self-trapped beam with the characteristic RPLS properties. The
physical mechanism underlying this observation is the fact that, under proper
conditions, nonlinearity transfers the energy between the modes of the linear
system in a specific fashion that leads to RPLS formation. We present here a
theoretical study of this type of dynamics, illustrating the evolution of the
intensity structure and the power spectrum of an incoherent beam into a RPLS,
in both one and two transverse dimensional geometry.

The dynamics of PCWs in nonlinear periodic lattices is relevant to various
fields of research. In this paper, we focus on nonlinear optical systems,
and study the propagation of partially spatially coherent waves in nonlinear
waveguide arrays. One of the key physical mechanisms in our system is the
noninstantaneous response of the nonlinearity: the nonlinearity cannot follow
fast fluctuations of the field, but rather responds to the time-averaged intensity.
This optical system is analogous to incoherent matter waves (matter waves
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involving a Bose–Einstein condensate and particles in excited states) in optical
lattices.

Our current studies of PCWs in nonlinear periodic lattices draw upon two
directions of research that have received considerable attention in recent years:
(1) partially coherent light waves in homogeneous nonlinear media [50–77],
and (2) coherent light waves in nonlinear periodic lattices [3, 8–49]. For
this reason, Section 2 provides a brief outline of the results from these two
directions of research that are most relevant to our current studies. The rest of
the paper is organized as follows. Section 3 describes the physical system
considered in [37, 45, 46], and the theoretical model(s) used for its description.
Section 4 discusses the dynamics of partially coherent waves in linear periodic
lattices. In Section 5 we focus on the theoretical description of RPLSs [37],
while in Section 6 we review some facts from the experimental observation of
RPLSs [45]. Section 7 presents a theoretical study of the dynamical evolution
of an incoherent beam with a simple bell-shaped intensity structure and power
spectrum into an incoherent beam with the complex RPLS characteristics. In
Section 8 we conclude.

2. Background

The behavior of partially coherent light in nonlinear photonic lattices has
been recently studied in the context of RPLSs, both theoretically [37] and
experimentally [45], and in the context of developing a novel experimental
technique for Brillouin zone spectroscopy (BZS) of linear and nonlinear photonic
lattices [46]. All previous studies of nonlinear phenomena (e.g., solitons and
modulation instability (MI)) with partially coherent light were performed in
homogeneous nonlinear media [50–77]. On the other hand, the propagation of
light in nonlinear periodic lattices was previously studied only with coherent
waves [3, 8–49]. In our current pursuit for the understanding of PCWs in
nonlinear photonic lattices we draw upon two directions of research: (1) partially
coherent light waves in homogeneous isotropic nonlinear media, and (2) coherent
light waves in nonlinear periodic lattices. Below, we briefly outline some of the
results from these two directions of research that are most relevant to our current
studies.

2.1. Partially coherent light waves in homogeneous nonlinear media

The nonlinear dynamics of partially coherent light in homogeneous nonlinear
media has been extensively studied since the first observation of spatially
incoherent solitons [50], and incoherent white-light solitons [51]. The light
source used in [50] was a laser beam sent through a rotating diffuser, which
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generated spatially incoherent, quasimonochromatic, light beam, equivalent to
light emitted by a quasithermal source [78, 79]. The incoherent white-light
soliton experiment [51] used an ordinary incandescent light bulb generating light
with a temporal spectrum that spans the entire visible range; in that experiment
the light was both spatially and temporally incoherent. The diffraction of such
an incoherent beam depends not only on the size of the beam, but also on its
coherence properties; a beam that is more incoherent has a stronger tendency
to diffract. When a stable balance between the incoherent beam diffraction and
the nonlinearity is achieved, an incoherent soliton is formed. An important
physical mechanism employed in [50, 51] for achieving this balance is the
noninstantaneous response of the nonlinearity: the nonlinearity is unable to
follow fast random fluctuations of the electric field, but rather responds to
the time-averaged intensity [50, 51]. This enables the formation of a smooth
self-induced waveguide whose modes are randomly populated. The average
population of these modes is such that the self-consistency loop is closed [53,
67], which is another way of stating the balance between incoherent beam
diffraction and the nonlinearity.

The experiments [50, 51] were followed by a flurry of theoretical and
experimental work on partially coherent light in homogeneous nonlinear media.
Some of the experimental results include the demonstration of self-trapping
of dark incoherent light beams [54], the observation of soliton clustering
in weakly correlated wavefronts [68], and the very recent observation of
elliptic incoherent solitons [72]. While most of the experiments were thus far
performed in photorefractive crystals employing the screening nonlinearity,
incoherent spatial solitary waves were also observed in nematic liquid crystals
[66]. Besides solitons, the nonlinear phenomenon of MI and spontaneous
pattern formation with spatially incoherent light has also been observed with
spatially incoherent light, also in noninstantaneous nonlinear medium [62].
The experiment of [62] has demonstrated that MI occurs only when the
nonlinearity overcomes a threshold set by the degree of coherence of waves.
For light that is less coherent the threshold is higher. This finding has led to the
experimental elimination of the transverse instabilities of Kerr solitons [63],
and to the observation of “anti-dark” solitons: bright solitons on a background
of a uniform beam [61]. In the latter experiment [61], the uniform-component
beam was sufficiently spatially incoherent to eliminate MI, whereas the soliton
component was fully coherent. In a similar vein, we note a recent observation
of stable propagation of spatially localized optical vortices in self-focusing
nonlinear medium; the azimuthal instability was arrested by means of spatial
incoherence [73]. Another related experiment demonstrated induced MI of
incoherent light [65]. Most recently, the phenomenon of MI and spontaneous
pattern formation was observed with incoherent white light [76], where an
incandescent light bulb has been utilized as the light source. The experiment has
shown that all temporal frequencies in the incoherent white-light beam behave
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in a collective fashion; they undergo instability at the same threshold value
and self-adjust their contributions in the spontaneously formed pattern [76].

On the theoretical side, several different theoretical approaches have been
developed for the analysis of incoherent light propagation in noninstantaneous
nonlinear media, and various nonlinear phenomena were predicted and
explained. There are three formally equivalent theoretical approaches [64],
the coherence density theory [52], the modal theory [53], and the mutual
coherence function theory [57]. In some cases, one approach may be more
suitable than the other to analyze the dynamics, e.g., modal theory seems
to be most suitable for the analytical or numerical calculation of spatially
incoherent solitons, while the mutual coherence function approach seems to
be more suitable for the analysis of MI with incoherent light. In addition
to these approaches, an intuitive geometrical optics approach useful for the
description of big incoherent solitons was suggested as well [55]. A statistical
physics approach based on the Wigner transform was developed and used to
analyze incoherent solitons and MI [69]. For the description of the propagation
of incoherent white light (both spatially and temporally incoherent light) in
noninstantaneous nonlinear media, a model based on the mutual spectral
density [70], and other equivalent models [71], were used. The aforementioned
theoretical approaches were used for the description of nonlinear phenomena
with incoherent light such as bright spatially incoherent solitons [52, 53, 55,
57], dark incoherent solitons [56], and incoherent white light solitons [71]. It
was evident from the theoretical papers that incoherent solitons exist and are
stable in a broad range of parameters [53]. Incoherent solitons of variable shape
were also shown to exist [58], having no coherent equivalent in homogeneous
isotropic nonlinear media. The predictions of MI with spatially incoherent light
[60], and with incoherent white light [70], were later experimentally confirmed.
Regarding the stability of steady-state solutions, although incoherence may
eliminate the instability during MI [60], and eliminate the transverse instability
of Kerr solitons [63], it has been demonstrated that partially coherent (2+1)D
beams in Kerr media undergo catastrophic collapse [59]. Recently, studies of
incoherent solitons in instantaneous response nonlinear media [74, 77], and
nonlocal incoherent solitons [75] have appeared. Quite generally, all these
papers have pointed out that the statistical (coherence) properties of the light
greatly influence the features of nonlinear phenomena. For a comprehensive
review on partially coherent light in homogeneous noninstantaneous nonlinear
media (with emphasis on solitons and MI), see [67].

2.2. Coherent light waves in nonlinear periodic lattices

The dynamics of coherent light waves in nonlinear waveguide arrays has
received considerable attention in recent years. Of particular interest is the
physics of nonlinear localized modes, such as discrete solitons [29] or breathers
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[11, 18, 48]. Solitons in nonlinear waveguide arrays occur when a stable
balance is achieved between diffraction of a localized wavepacket in a periodic
medium, and the counteracting nonlinear effect. The diffraction of a localized
wavepacket in a periodic medium can be both normal and anomalous (see
Section 4). The curvature of the phase front during normal diffraction is
convex and evolves in the same fashion as in linear homogeneous media
(hence the word normal). On the other hand, the curvature evolves in the
opposite (concave) fashion during anomalous diffraction. These facts make a
great distinction between light propagation in periodic versus homogeneous
(uniform) media. As an example, in nonlinear waveguide arrays, bright solitons
can form as a balance between nonlinear self-focusing and normal diffraction,
or between self-defocusing and anomalous diffraction; the latter case has no
counterpart in homogeneous media.

Coherent optical solitons in nonlinear waveguide arrays were predicted in
1988 [3], and observed 10 years later [12]. A number of experiments related
to the propagation of coherent wavepackets in linear and nonlinear periodic
lattices followed, to name a few: the observations of Bloch oscillations [15,
16], diffraction management [19, 23], spatial gap (staggered) solitons [26,
27], higher band Floquet–Bloch solitons [28], and modulational instability
[36]. Coherent lattice solitons were also observed with quadratic non-
linearities [44], and with liquid crystal waveguide arrays [38]. The demonstration
of lattice solitons in the (2+1)D geometry [27] opened up the possibility for
studying lattice solitons carrying angular momentum, such as vortex lattice
solitons [34, 35]. The (2+1)D photonic lattice from [27] was obtained with the
use of the optical induction technique proposed in [24]. The same system
facilitated the demonstration of 2D dipole-type lattice [41] solitons and 2D
vector lattice solitons [42]. This is the system we used for the experimental
observation of random-phase lattice solitons [45], and for developing a novel
experimental technique for BZS [46]. We note that the optical induction
technique for generating 2D nonlinear photonic lattices works not only with
interfering plane waves, but also with arrays of incoherent tightly focused beams
[17, 43]. However, in that case, if the waves inducing the lattice propagate
linearly, their intensity structure necessarily evolves during propagation. The
alternative is to have the lattice-inducing waves propagate nonlinearly, in which
case they form an array of incoherent solitons [17]; such nonlinear lattices
require larger lattice spacings to eliminate the possible instabilities.

Theoretically, nonlinear phenomena in nonlinear waveguide arrays have at first
been analyzed by using the discrete nonlinear schrodinger equations (DNLSE)
[3]. Discrete models were used to describe various nonlinear phenomena in
nonlinear periodic systems, e.g., MI [3], self-localization in arrays of defocusing
waveguide arrays [8], dark solitons in discrete lattices [9], discrete strongly
localized vectorial modes [13], discrete solitons in quadratic nonlinear media
[14], soliton interactions and beam steering in nonlinear waveguide arrays [10],
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discrete vortex solitons [20], discrete diffraction-managed solitons [22, 25],
discrete cavity solitons [40], etc. While discrete models are successful for
describing many phenomena, they are not suitable for the analysis of those
nonlinear lattice phenomena that involve the excitation of modes from higher
bands. The evolution of waves exciting higher bands can be studied through a
continuous nonlinear evolution equation with a periodic potential term, utilizing
the Floquet–Bloch theory [21, 24]. Because excitation involving incoherent
light are broad in k-space, the latter continuous theoretical model is ubiquitous
[37]. Such continuous models have been used for the prediction of solitons in
nonlinear optically induced lattices [24], the prediction of multiband vector
lattice solitons [30, 31], the theoretical and experimental analysis of nonlinear
Bloch-wave interaction and Bragg scattering in optically induced lattices [33],
the theoretical study of vortex solitons from the 1st and 2nd bands [34, 39],
and the theoretical prediction of random-phase lattice solitons [37].

Several reviews on these nonlinear phenomena were written in recent years,
with emphasis on localization of light in nonlinear waveguide arrays [29] and
waves in nonlinear photonic crystals [47]. The physics and applications of
nonlinear localized modes in various fields is also reviewed in [48, 49].

3. Description of incoherent light in a linear/nonlinear waveguide array

In this section, we describe the physical system under consideration, and
the model used for its description. A source of light is partially spatially
incoherent and quasimonochromatic. For example, it can be obtained by passing
a laser beam through a rotating diffuser [50]. The electric field E(r, z, t)
of the incoherent light is linearly polarized; here r = x i + yj denotes spatial
(transverse) coordinates, z is the propagation direction, and t denotes time.
The characteristic time of random fluctuations of the electric field, i.e., the
coherence time, is denoted with τ c. The second-order coherence properties of
the light are contained within the mutual coherence function [78],

B(r1, r2, z) = 〈E(r1, z, t)E ∗(r2, z, t)〉, (1)

where brackets 〈 · · · 〉 denote the ensamble average, which is equal to the
time-average for ergodic sources [78], as is assumed to be the case here. We
are interested in the evolution of mutual coherence B(r1, r2, z) along the
propagation axis z.

This partially spatially incoherent continuous wave beam is incident upon a
noninstantaneous nonlinear medium (e.g., photorefractives [50], liquid crystals
[66]) with a periodically modulated index of refraction. The response time of
the nonlinearity τm is much longer than the coherence time, τm � τ c; thus the
nonlinearity is unable to follow the fast random fluctuations of the field. From
this it follows that the nonlinear index change δn is in temporal steady state,
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∂δn/∂t = 0; δn depends on the time-averaged intensity I (r, z) = B(r, r, z).
The square of the total index of refraction can be written as n2

0 + 2n0V (r, z),
where n0 denotes the (homogeneous) linear part of the refractive index, while
the potential

V (r, z) = p(r) + δn(I (r, z)) (2)

contains both the nonlinear term δn(I (r, z)), and the periodic term p(r), which
describes the lattice and its properties. In (1 + 1)D problems, p(x) = p(x + D),
where D is the lattice spacing. In (2 + 1)D problems, the periodic term is
invariant under translations by R = n1a1 + n2a2, that is, p(r) = p(r + R), where
a1 and a2 are primitive vectors of the lattice and n1 and n2 are integers. Note
that the periodic term does not vary with the propagation coordinate z. This
geometry of the system is referred to as a nonlinear waveguide array [29].

We still need a nonlinear evolution equation to describe the dynamics. By
using the paraxial approximation, it can be shown that the randomly fluctuating
field obeys [53, 57]

i
∂E

∂z
+ 1

2κ
∇2 E + V (r, z)κ

n0
E = 0, (3)

where κ = n0ω/c denotes the wavenumber. From Equation (3) we obtain an
equation of motion describing the dynamics of the intensity and statistical
properties of the light along the propagation axis:

i
∂B

∂z
+ 1

2κ

(∇2
1 − ∇2

2

)
B + κ

n0
[V (r1, z) − V (r2, z)]B = 0. (4)

The mutual coherence function B(r1, r2, z) provides the statistical properties
of the incoherent light. However, for the analysis of random-phase lattice
solitons in terms of the Floquet–Bloch theory [6], it is more fruitful to
use the modal theory [53, 64]. Within the modal theory, the electric field
is presented as a superposition of coherent waves with randomly varying
coefficients E(r, z, t) = ∑

m cm(t)ψm(r, z) [53], while the statistics follows from
〈cm(t)c∗

m ′(t)〉 = dmδmm′ , that is,

B(r1, r2, z) =
∑

m

dmψm(r1, z)ψ∗
m(r2, z), (5)

while I (r, z) = ∑
m dm |ψm(r, z)|2. The functions ψm(r, z) form an orthonormal

set, and dm denotes the power within the mth coherent wave [64]. The evolution
of coherent waves ψm , and consequently of statistical properties (Equation (5)),
is governed by a set of equations:

i
∂ψm

∂z
+ 1

2κ
∇2ψm + V (r, z)κ

n0
ψm(r, z) = 0. (6)

The mutual coherence function approach [57, 64] is fully equivalent to the
modal approach [53, 64].
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Equations (4) and/or (6) describe the propagation of spatially incoherent
light in noninstantaneous nonlinear media with periodically modulated index
of refraction. When the media is linear, i.e., when V (r, z) = p(r, z), we can
apply the superposition principle, and describe the dynamics by projecting
the initial excitation onto the modes of the linear system, the Floquet–Bloch
waves, which is described in the next section.

4. Linear dynamics

In the linear case, the dynamics of incoherent light is described by a set of
uncoupled evolution equations for the set of wavefunctions ψm(r, z) as

i
∂ψm

∂z
+ 1

2κ
∇2ψm + p(r)κ

n0
ψm(r, z) = 0. (7)

Each coherent wave ψm(r, z) evolves independently from all other coherent
waves. The overall evolution of the statistical properties of the incoherent light,
and of the time-averaged intensity, may be obtained from Equation (5).

The evolution of a single coherent wave ψm(r, z) can be traced by projecting
it onto the eigenstates of the linear lattice,1 the Floquet-Bloch (FB) waves
φnk(r, z) = f nk(r) exp[ik · r + iβz], which are obtained from the spectral
equation

1

2κ
∇2

[
fnk(r)eik·r] + p(r)κ

n0
fnk(r)eik·r = βfnk(r)eik·r, (8)

where f nk(r) is a function with the periodicity of the lattice, f nk(r) = f nk(r + R).
Equation (8) is well known from solid-state physics, as it describes the
eigenstates of an electron in a periodic potential of an atomic lattice [6]. The
index n in the notation for FB waves denotes the band number, while k is the
Bloch wave vector [6, 7]. The Bloch wave vectors are organized into Brillouin
Zones (BZs), which are most conveniently illustrated in the extended BZ
scheme [6]. The transmission spectrum (a set of real βs) of the FB modes is
organized into bands, separated by gaps. The spectral values β depend on
the band number n and Bloch wave vector k, β ≡ β(n, k) (for brevity, in
what follows we do not explicitly write this dependence). For 1D lattices,
bands are separated by gaps, whereas for 2D lattices, gaps do not always occur
[32]. In spatial optics of waveguide arrays, the spectral values (βs) are the

1The coherent waves ψm are generally not the eigenmodes of the lattice. They depend on the coherence
properties of the light contained in the mutual coherence function B(r1, r2, z), and they can be
calculated from an integral eigenvalue equation,

∫
B(r1, r2, z)ψm (r2, z)dr2 = dmψm (r1, z), under quite

general conditions [78]; dm are eigenvalues while ψm are eigenmodes of the integral equation
above.
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Figure 1. The diffraction curve of a one-dimensional linear periodic lattice (solid lines),
and a diffraction curve corresponding to a linear homogeneous isotropic medium (dotted
parabola). The propagation constants of the lattice diffraction curve (ordinate) are organized
into bands separated by gaps; the first three bands are shown. The kx-space (abscissa) is
partitioned into Brillouin zones; the picture is drawn in the extended zone scheme [6]. The
dotted parabola has a negative curvature (∂2β/∂k 2

x < 0) across kx-space which corresponds
to normal diffraction. The periodic system has regions of normal diffraction (∂2β/∂k 2

x < 0,
shaded regions), and regions of anomalous diffraction (∂2β/∂k 2

x > 0, white).

propagation constants of the FB propagating modes. In solid-state physics,
β corresponds to energy (note that the ordering of propagation constants is
up-side-down in comparison with the ordering of energy values).

Consideranexampleofaspectrumcorrespondingtoalinear1Dphotonic lattice
with parameters p(x) = p0

∑
m e−[(x−m D)/x0]8

, p0/n0 ≈ 1.74 10−4, x0/D =
0.37. Figure 1 shows the values of the propagation constants (β) as a function
of a Bloch-wave vector (kx), exemplifying the organization into bands and
gaps in the extended BZ scheme. In 1D periodic media, the nth BZ (n = 1,
2, . . .) is a union of intervals ±[(n − 1)π/D, nπ/D]. For comparison, the
dotted parabola in Figure 1 denotes the diffraction curve for the homogeneous
(and isotropic) linear media.

When an incoherent beam enters a linear waveguide array, at the input face
of the medium (z = 0) each coherent wave ψm(r, z = 0) excites a number of
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FB waves, which may be written as ψm(r, z = 0) = ∑
nk cm

nkφnk(r, z = 0). The
coefficients in the expansion cm

nk follow from

cm
nk =

∫
ψm(r, z = 0) f ∗

nk(r)e−ik·rdr. (9)

Because the system is linear, there is no transfer of energy among the modes
of the linear system, and the evolution of ψm(r, z) is simply given by

ψm(r, z) =
∑
nk

cm
nkφnk(r, z) =

∑
nk

cm
nk fnk(r)eik·reiβz. (10)

The dynamics of each coherent wave is not coupled to the dynamics of the
others, hence we may formally write the mutual spectral density,

B(r1, r2, z) =
∑

m

∑
nk

∑
n′k′

dmcm
nkcm∗

n′k′φnk(r1, z)φ∗
n′k′(r2, z)

=
∑

m

∑
nk

∑
n′k′

dmcm
nkcm∗

n′k′ fnk(r1) f ∗
n′k′(r2)eik·r1−ik′·r2ei(β−β ′)z. (11)

The linear dynamics is conceptually simple: at z = 0 we simply project the
initial excitation onto the eigenmodes of the linear system φnk, i.e., we
calculate the complex coefficients cm

nk via Equation (9), and trace the evolution
of the coherent waves ψm(r, z) and the mutual coherence B(r1, r2, z) by using
Equations (10) and (11), respectively. However, in spite of this conceptual
simplicity, even linear dynamics in these systems can possess interesting
nontrivial features.

The dynamics of a localized beam entering a linear waveguide array is referred
to as diffraction in periodic media, or discrete diffraction. Consider a localized
wavepacket exciting the FB waves around some transverse momentum value k.
The diffraction of such wavepacket depends on the curvature of the diffraction
manifold at k. In 1D periodic media, the diffraction coefficient Dp(kx) =
∂2β(kx)/∂k2

x oscillates around zero, and the regions of normal [Dp(kx) < 0] and
anomalous diffraction [Dp(kx) > 0] alternate (Figure 1). The nth BZ (n = 1, 2,
. . .) is divided into the normal ± [(n − 1)π/D, αn), and anomalous diffraction
intervals ± (αn , nπ/D], where Dp(αn) = 0 (Figure 1). Normal diffraction
intervals are those where the diffraction curve has the same curvature as the
parabola corresponding to free-space diffraction (Figure 1). Thus, the main
difference between diffraction in homogeneous media and diffraction in periodic
media, is that in the latter case diffraction can be both normal and anomalous.
This feature has initiated several studies related to the possibility of diffraction
management [19, 22, 23, 25].

The properties of the linear system greatly affect the features of nonlinear
wave phenomena in the associated nonlinear system. This is clearly seen in
the analysis of the solitary waves (lattice solitons or discrete solitons), which
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propagate in the lattice without changing their intensity profile, as discussed in
the next section.

5. Random phase lattice solitons: Theory

A localized incoherent wavepacket that enters a linear waveguide array
diffracts, that is, it experiences nonstationary propagation (Section 4). In a
nonlinear system, a stationary incoherent wavepacket, that is a RPLS, can
form if diffraction is exactly balanced by nonlinearity. In this section, we
theoretically describe the characteristic properties of random-phase solitons in
nonlinear periodic lattices. An RPLS is characterized by its intensity profile,
power spectrum, statistical (coherence) properties, and by the structure of the
coherent waves that describe it within the modal theory. All these quantities
provide different information on the RPLS, but they are all intimately related.
In order for a RPLS to exist, its intensity profile, power spectrum, coherence
properties, and its coherent wave composition, must all conform to the lattice
periodicity [37].

The behavior of the power spectra of RPLSs is perhaps the most interesting
among all their features, and it can be described in an intuitive fashion by
qualitatively analyzing the diffraction in periodic media. When the beam is
incoherent, the width of its power spectrum may extend over a wide region
in the k-space [37, 45, 52]. As we have already discussed in the previous
section, in k-space, there are regions of normal and anomalous diffraction.
Solitons occur when a stable balance is achieved between diffraction and
nonlinearity. However, as nonlinear self-focusing balances normal diffraction,
we intuitively conclude that in a self-focusing medium, the Floquet-Bloch
power spectrum of an RPLS should be mainly supported within the normal
diffraction regions of the k-space. The opposite should occur for self-defocusing
media: self-defocusing effects balance anomalous diffraction, and thus the
Floquet-Bloch power spectra of RPLSs in a self-defocusing medium should
be located primarily in the anomalous diffraction regions of the k-space. We
express the power spectra of an incoherent beam in terms of the Fourier
transform,

JFT(k, z) =
∑

m

dm

∣∣∣∣
∫

drψm(r, z)e−ik·r
∣∣∣∣
2

, (12)

and by projecting the coherent waves onto the FB waves of the linear waveguide
array,

JFB(k, z) =
∑

m

dm

∣∣∣∣
∫

drψm(r, z) f ∗
nk(r)e−ik·r

∣∣∣∣
2

; (13)
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Figure 2. The propagation constants, and power spectra of the two examples of RPLSs.
Diffraction curves 0.58kx2

0β vs. kxD/π (solid curves) of the linear periodic system, and the
propagation constants 0.58kx2

0κn,l (circles) of (a) a 1st-band RPLS, and (b) a three-band
RPLS. The Fourier power spectrum of (c) the 1st-band RPLS, and (d) the three-band RPLS.
The power spectra in the FB basis for (e) the 1st-band soliton, and (f) the three-band
soliton.

here r denotes the transverse (1D or 2D) coordinate. The intuitive prediction
above is verified numerically [37] and experimentally [45]. Figures 2(c)–(f)
illustrate the power spectra of two RPLS examples calculated numerically in
a 1D nonlinear periodic lattice with a self-focusing nonlinearity (for exact
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parameters see below); the spectra are mainly located in the normal diffraction
regions of the BZs.

All properties of RPLSs can be calculated from their coherent wave structure,
which must be such that the self-consistency loop is closed: the incoherent
beam (described by a set of coherent waves ψm) induces, via the nonlinearity, a
defect in the periodic lattice δn[I (r)]. This defect in the lattice creates localized
(defect) states, whose propagation constants reside in the gaps of the spectrum
of the linear system. If some (or all) of the defect states are identical to the
coherent waves ψm making up the incoherent beam, the self-consistency loop
is closed, and the incoherent beam described by such jointly localized coherent
waves is an RPLS. It is convenient to change the notation for the coherent waves
of an RPLS: ψm → ψn,l = un,l (r)exp(iκn,lz). In this notation, the propagation
constant κn,l of a coherent wave ψn,l resides in the gap above the nth band (see
circles in Figures 2(a) and (b)), while l describes the hierarchy within a single
gap (if l < l ′ then κn,l > κn,l′). Mathematically, a closed self-consistency loop
means that the spatial profiles un,l(r) are eigenmodes, and the propagation
constants κn,l are the corresponding eigenvalues, of a nonlinear eigenvalue
equation,

1

2κ
∇2un,l + {p(r) + δn[I (r)]}κ

n0
un,l = κn,lun,l(r), (14)

where

I (r) =
∑
n,l

dn,l |un,l(r)|2. (15)

The localized eigenmodes ψn,l are randomly excited; their time-averaged
occupancy is given by the modal weights dn,l. The statistical properties
of RPLSs described above are stationary during propagation because
B(r1, r2) = ∑

n,l dn,lun,l(r1)u∗
n,l(r2) is independent of z, ∂B(r1, r2)/∂z = 0.

In the qualitative analysis above we have implicitly assumed that the defect
in the periodic lattice, induced by RPLS via nonlinearity, does not severely alter
the lattice at the position of RPLS. For example, the maximal index change
due to nonlinearity is, say, less than 50% of the lattice depth. Furthermore, we
have implicitly assumed that the width of the gap just below the first band is
not significantly larger than the width of the first band itself (the lattice is not
too deep); in this case diffraction effects are more pronounced, and diffraction
lengths are smaller.

The analysis of RPLSs above is applicable to both (1 + 1)D and
(2 + 1)D solitons, and various types of nonlinear media. In what follows,
we outline results related to the intensity structure and the coherence
properties of (1 + 1)D RPLSs in self-focusing and saturable nonlinear
medium, δn(I ) = γ I/(1 + I/I S). Most of these results are expected to hold
in a more general setting. The periodic potential used in the calculation
is p(x) = p0

∑
m exp −[(x − m D)/x0]8, while the parameters are n0 = 2.3,
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p0 = 4 10−4, x0 = 3.7 µm, D = 10 µm, k = n02π/λ, where λ = 488 nm, and
γ I S = 1.5 × 10−4. We present two RPLS examples where the localized modes
un,l originate (1) solely from the first band and (2) from the first three bands.
The power is distributed among the localized modes as dn,l ∝ exp[−l2/(2w2

n)]
for l ≤ ln, where ln denotes the number of excited modes in the gap above the
nth band. For the 1st-band RPLS l1 = 11, w1 = 4.34 (Figures 3(a) and (b)),
while for the three-band RPLS l1 = 11, l2 = 6, l3 = 3, w1 = 4.34, w2 = 2.36,
and w3 = 3.55 (Figures 3(c)–(f)). The propagation constants of the 1st-band
RPLS are all located in the semi-infinite gap above the first band (see circles
in Figure 2(a)). The propagation constants of the three-band RPLS are located
in three gaps (see circles in Figure 2(b)).

The self-induced defects of the RPLSs are broad due to the fact that a number
of defect modes (coherent waves ψn,l) are excited (e.g., see Figure 3(f)). The
defect structure depends on the intensity of the RPLS. The envelopes of the
intensity profiles of RPLSs are generally broad and cover several lattice sites
(waveguide channels). Notice the (spatial) intensity oscillations superimposed
on the envelopes, conforming to the periodicity of the lattice. The structure of
these oscillations depends on the structure of the coherent waves ψn,l. For
example, when all the coherent waves ψn,l originate from the 1st-band (i.e.,
when all propagation constants κn,l are in the semi-infinite gap), then the
intensity is mainly localized on-sites (within the waveguides; see Figure 3(a)).
However, when there is considerable amount of power in the coherent waves
ψn,l originating from higher bands, then a larger amount of power is also
found in the interstitial regions (Figure 3(c)).

This is explained by observing (in our numerical simulations) that the
self-localized coherent waves of an RPLS inherit the properties of the FB waves
from which they originate [30, 37]. The extended FB waves from higher bands
have a larger amount of power in the interstitial regions; the same holds for the
self-localized RPLS modes that originate from these bands. In addition, we have
numerically observed that the self-localized modes originating from the nth
band are orthogonal with the extended FB waves from other bands. Thus, the
FB spectrum of the 1st-band RPLS is entirely located within the 1st BZ [37].

Let us now discuss the (statistical) coherence properties of an RPLS.
The correlation between randomly fluctuating fields E(x , z, t) at points
x1 and x2 from the same transverse plane z is expressed by the complex
coherence factor, µ(x, x ′) = B(x, x ′)/

√
I (x)I (x ′). The spatial correlation

distance ls(x) = ∫
R dx ′|µ(x, x ′)|2 expresses the length scale at which there is

still some correlation between the fluctuating fields; the region of integration R
is several times larger than the soliton region. A commonly observed feature
of RPLSs is that, within a (broad) soliton region, the statistical properties of
an RPLS are approximately invariant under translations by a lattice constant,

µ(x, x ′) ≈ µ(x + D, x ′ + D), (16)
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Figure 3. The intensity profiles, diffraction, and spatial coherence properties of the RPLSs.
First-band RPLS: (a) the intensity profile I (x)/I S (solid line) and ls(x)/D (dashed line); (b)
diffraction after 8.29 mm of propagation. Three band RPLS: (c) I (x)/I S (solid line) and
ls(x)/D (dashed line); (d) diffraction after 8.29 mm. (e) The complex coherence factors
µ(x , 0) (solid line) and µ(x + D, D) (dashed line) of the three-band RPLS; the two graphs are
almost identical. (f) The normalized induced potential V (x) (defect) of the three-band RPLS
containing the periodic and nonlinear term. Vertical lines denote the lattice sites.

which is illustrated in Figure 3(e). As a consequence of that, the spatial
correlation distance behaves periodically within a soliton region, ls(x) ≈
ls(x + D) (see Figures 3(a) and (c)). From Figures 3(a) and (c) we also see
that the spatial correlation distance increases at the tails of the RPLS, which
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is explained by noting that only the slowly decaying modal constituents are
present at the tails, which increases the spatial coherence in that region. The
same feature is observed for incoherent solitons in homogeneous media [67].

To check whether a solution is indeed an incoherent soliton, we have to
check its stability against small perturbations, and study the diffraction of such
a beam when the nonlinearity is turned off. The diffraction characteristics of
our RPLSs examples are shown in Figures 3(a) and (d). The diffraction of
an incoherent beam as a whole depends on the direction of propagation and
diffraction coefficients associated with each coherent wave ψn,l (Section 4).

6. Random phase lattice solitons: Experiments

According to the theoretical prediction, the properties of an RPLS are complex,
e.g., the power spectrum should be multihumped, with humps being located
at normal (anomalous) diffraction regions of the k-space in the case of
self-focusing (defocusing) nonlinearity. To experimentally observe an RPLS,
ideally, an incoherent beam with the properties of an RPLS should be first
engineered, and then launched into a nonlinear waveguide array to check
whether it is truly a soliton. Unexpectedly, we experimentally found that a
probe beam with a homogeneous k-space distribution (displaying a single
hump with a proper width) and a bell-shaped intensity structure self-adjusts its
spectrum and intensity structure and evolves naturally, under proper nonlinear
conditions, into an RPLS [45]. Figure 4(b) shows the homogeneous power
spectrum of the input beam, which has evolved into a multihumped power
spectrum of an RPLS shown in Figure 5(e); the nonlinearity is of the
self-focusing type, hence, the humps are in the regions of the normal diffraction
(see text below for details). This finding of the evolution of an incoherent

Figure 4. The properties of the incoherent input beam at the input face of a nonlinear
photonic lattice. (a) The induced square lattice and the incoherent input beam in real space;
the lattice spacing is 11.5 µm. (b) Wide circle shows the Fourier power spectrum of the
incoherent input; four dots are the power spectra of the lattice-forming beams; they define the
corners of the first Brillouin zone. (c) The Fourier power spectrum of a coherent beam with
the same intensity envelope as the incoherent input beam from (a).
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Figure 5. The properties of the incoherent beam (RPLS) after it propagates through the
nonlinear medium. (a) Diffraction of an incoherent beam with low intensity; other properties
are identical to the input beam from Figure 4. Pictures of the RPLSs in real space: (b)
centered on-site, (c) centered between two lattice sites (waveguide arrays), and (d) centered
between four lattice sites. Note that the diffracted beam from (a) has ∼2.5 times larger width
than the RPLSs. (e) Picture representing the RPLSs in Fourier space. The power spectrum is
multihumped with square symmetry. The humps are located in the normal diffraction regions
of the first two Brillouin zones (four dots represent the corners of the first Brillouin zone). (f)
The Fourier power spectrum of an incoherent beam after it propagates through a homogeneous
nonlinear medium (the lattice is removed); the multi-humped features do not exist.

input beam with a simple structure toward a RPLS indicates that the nonlinear
dynamics of partially coherent waves in nonlinear periodic systems possesses
many intriguing features that merit further exploration.

The source of the quasimonochromatic partially spatially coherent light is
in our experiments constructed by sending a 488-nm laser beam through a
rotating diffuser, and then 1:1 imaging the beam exiting the diffuser with a
telescopic 4f system onto the input face of the crystal (Figure 6). The coherence
time of the light can be controlled by the rotation rate of the diffuser, while the
degree of spatial coherence and the power spectrum of the exciting beam (the
probe beam) can be controlled by a spatial filter in the Fourier plane of the 4f
system (Figure 6).

Our experiments are carried out in optically induced nonlinear photonic
lattices [24], previously used to demonstrate lattice solitons in both one and two
dimensions [26, 27]. As the induction technique is essentially holographic, the
method can be used to construct lattices of arbitrary geometry (e.g., square,
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Figure 6. The experimental setup. (a) The schematic picture of the setup used to obtain the
two-dimensional, square, nonlinear photonic lattice. (b) The schematic picture which shows
the setup used to construct a partially spatially incoherent source. The width of the power
spectrum (and hence the degree of coherence) can be controlled with the spatial filter in the
Fourier plane of the telescopic 4f system.

hexagonal, etc.). Here, we interfere plane waves in a photorefractive SBN
crystal to obtain a 2D square array of 2D waveguides (see Figure 4(a) and
6). The nonlinearity results from the photorefractive screening effect [50].
The strength of the nonlinearity is controlled by voltage applied across the
crystalline c-axis [50]. For the experiments described here, the lattice is 5-mm
long, each array beam has 15 mW of power, and the nonlinearity is set by
applying 1 kV across the crystal. We note that the nonlinear response time
of the medium is much longer than the characteristic time of the random
fluctuations of the incoherent beam; hence, the theoretical model described
above is applicable in this system.

The characteristics of the input beam (the beam entering the nonlinear
waveguide array) and the output beam (the beam exiting the nonlinear medium)
are measured both in real space and in k-space (for the latter we use a lens and
monitor the intensity at the focal plane). This is important for the unambiguous
interpretation of the results. The characteristics of the input beam are shown in
Figures 4(a) and (b). Figure 4(a) depicts a real-space photograph of a probe
beam (26 µm at FWHM) launched into the induced square lattice (lattice
spacing is 11.5 µm). The probe beam is broad and covers several waveguide
channels. Figure 4(b) shows the Fourier power spectrum of the incoherent
probe beam (wide circle). The four dots in Figure 4(b) represent the Fourier
power spectra of the lattice-forming waves. By construction, these lattice
writing beams form Bragg angles in our system; hence, the corresponding
square defined by the four dots in Figure 4(b) outlines the first BZ. The power
spectrum of the incoherent input beam covers all of the first BZ and significant
parts of the second BZ. It should be emphasized that the power spectrum of an
incoherent beam depends not only on its envelope (as is the case for coherent
beams), but also on the degree of coherence as well. For example, Figure 4(c)
shows the power spectrum of a coherent input beam (with the diffuser removed)
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of the same envelope in real space as the incoherent input beam. We see that
the width of the power spectrum of the coherent beam is roughly three times
smaller than the spectral width of the incoherent input beam. From this we
infer that the average speckle size in the incoherent beam is less than one-third
of the size of the envelope. Because the diameter of the envelope is equal to
roughly three lattice spacings (see Figure 4(a)), the spatial correlation distance
of this partially coherent beam is, therefore, comparable to the lattice period.

The incoherent beam is focused into the lattice with the real-space
distribution and power spectrum shown in Figures 4(a) and (b), respectively.
Figure 5 shows the characteristics of the beam at the output face of the crystal
(i.e., after it propagates for 5 mm through a nonlinear lattice). Figure 5(a)
shows diffraction for a probe beam with low-intensity, characterized by a 1:50
intensity ratio between the probe and array beams. The size of the output beam
is about 2.5 times larger than the size of the input beam. For a 10 times
larger intensity of the probe beam (1:5 ratio), the nonlinearity becomes strong
enough to balance diffraction, and the incoherent probe beam self-traps and
forms a random-phase lattice soliton. Figure 5(b) shows an RPLS centered on
a site, while Figures 5(c) and (d) show RPLSs centered between 2-sites and
4-sites, respectively. Figure 5(e) depicts the power spectrum of the RPLSs.
The M-symmetry points at the corners of the first BZ are defined by the four
dots (spectra of the lattice-forming beams). The power spectrum of the RPLSs
takes on the square symmetry of the lattice and is clearly multihumped. For
this particular example, the nonlinearity is of the self-focusing type, thus the
power spectrum is located within the normal diffraction regions of the first two
BZs. When the lattice is removed, and all other parameters of the system kept
fixed (applied bias field and intensity), the diffraction of the beam in such
homogeneous (no lattice) medium is too strong to be fully balanced by the
nonlinearity. Figure 5(f) shows the power spectrum of the output beam which
is, unlike the RPLS spectrum, homogeneous.

In [45] we have also experimentally observed that an input beam with a
homogeneous power spectrum covering only a part of the first BZ may evolve
into an RPLS possessing a spectrum in the first two BZs. This indicates that
power has moved from the anomalous diffraction regions of the first BZ to the
normal diffraction regions of the second BZ. The dynamics observed in our
experiments, namely, the evolution of an incoherent beam with bell-shaped
intensity and power spectrum into an RPLS, is studied numerically in the next
section.

7. Dynamical evolution of an input incoherent beam into a RPLS

In linear dynamical systems, one can project the initial excitation onto the
orthogonal modes of the system, and observe the dynamics through linear
superposition. The energy present in every orthonormal mode is conserved
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during evolution. However, even a small nonlinearity added to the system can
induce energy transfer between the modes of the linear system. This fact has
motivated Fermi, Pasta, and Ulam to study the dynamics in a nonlinear lattice,
and investigate the possibility of thermalization via nonlinearity [80]. They
expected that, when just one or a few modes of the linear system are initially
excited, the nonlinearity would transfer the energy to other modes and lead to
the equipartition of energy (uniform distribution of energy among all linear
modes). They have discovered that instead of thermalization, the system cycles
in an almost periodic fashion, while energy recurs to the initial mode [80]. In
our experimental study of RPLSs, it turned out that the nonlinear transfer of
energy among the modes of the linear system can be exactly such that, under
proper nonlinear conditions, a homogeneous k-space excitation evolves into
characteristic multihumped shape of an RPLS. Thus, the initial condition is
in a sense opposite to that of the famous FPU work [80]. Here we roughly
homogeneously excite a large number of modes of the linear system, yet the
energy redistributes and eventually evolves into an inhomogeneous distribution
with the characteristic RPLS shape. This fascinating experimental observation
motivated us to study the physics underlying such nonlinear evolution process.
As a representative example, we study the evolution of a beam with a bell-shaped
intensity structure and a bell-shaped statistics, for example, a beam of light
from a Gaussian–Schell source [78]. Such an input beam will dynamically
evolve in a nonlinear waveguide array and change its intensity structure and the
power spectrum depending on the properties of the lattice and the nonlinearity.
In this section, we show theoretically that, indeed, a beam with a bell-shaped
intensity structure and power spectrum may, under proper nonlinear conditions,
evolve into a beam with the characteristic RPLS properties.

7.1. Evolution in a (1 + 1)D system

We start the analysis in a 1D geometry. The modal structure of an incoherent
beam with the bell-shaped intensity structure and a bell-shaped Fourier power
spectrum may be written as

ψkx (x, z = 0) =
√

I0(x)G(kx )eikx x , (17)

where I 0(x) is the intensity structure of the beam at z = 0. For the clarity of the
exposition, in this subsection we have changed the notation for coherent waves:
ψm → ψkx ; kx is a real continuous variable that has a physical meaning of the
transverse momentum of the kxth mode, while G(kx) is a real function defining
the weight of the kxth mode; G(kx) is normalized so that

∫
dkx |G(kx )|2 = 1. The

initial mutual coherence function of such a beam follows from Equation (5),

B(x1, x2, 0) =
√

I0(x1)I0(x2)
∫ ∞

−∞
|G(kx )|2eikx (x1−x2)dkx . (18)
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Figure 7. (a) The intensity structure and (b) the power spectra of the beam at the input face
of the medium (dotted lines), and after the evolution through the nonlinear medium (solid
lines). Vertical lines in (b) denote the edges of the Brillouin zones.

The coherence properties are obviously contained solely within the function
G(kx); if this function is broader, the transverse momentum spread is larger
and the input beam is more incoherent.

In Section 5, we have self-consistently calculated a (1 + 1)D RPLS and
analyzed their properties. Let us return to that particular system (with
exactly the same parameters of the lattice and the nonlinearity). Consider
an incoherent beam with the intensity structure and spatial statistics given
by I 0(x) = I pexp[−(x/I w)4], I p = 5I S, I w = 3D, G(kx) = G0exp[−(kx/kw)2],
kw = 1.5π/D, G0 is set so that

∫
dkx |G(kx )|2 = 1. The bell-shaped intensity

structure and the Gaussian-like Fourier power spectrum of this input beam
are shown in Figure 7 with dotted lines. The intensity profile of the input
beam covers roughly five to seven waveguide arrays, while its power spectrum
covers all of the first BZ, and a large portion of the second BZ. Such a beam is
launched into a nonlinear waveguide array and its propagation dynamics is
simulated with a standard split-step Fourier technique. The evolution of the
intensity structure and the power spectrum are shown in Figures 8 and 9,
respectively. We observe the following: In the initial stages of the evolution,
the beam self-adjusts to conform to the periodicity of the lattice; during this
brief initial stage a small amount of power is radiated away from the beam.
After this brief initial stage the beam stays self-trapped for many diffraction
lengths; it does not change its width and covers about seven waveguides
(Figure 8). The evolution of power spectrum is the most interesting. The power
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Figure 8. Evolution of the intensity profile of an incoherent beam in a (1 + 1)D nonlinear
waveguide array. The beam is self-trapped and evolves for many diffraction lengths without
broadening; the width of the beam is covering seven waveguide arrays.

spectrum evolves in such a way to become multihumped, with humps being
located in the normal diffraction regions of the first two BZs (Figure 9); a very
small amount of power is located also in the third BZ, close to its edges in
the normal diffraction region. Solid lines in Figure 7 illustrate the intensity
structure and the power spectrum of the beam at the output. Small internal
oscillations in the structure of the beam that are present during the evolution
are attributed to the fact that the beam dynamics corresponds to a trajectory in
a phase space that is not an exact soliton solution. However, due to the fact
that the beam is self-trapped, and its width is not changed for many diffraction
lengths, we conclude that this trajectory runs close to an exact solitary wave,
such as the one calculated in Section 5.

To verify that the characteristic evolution of the bell-shaped input beam (both
in real and Fourier space) shown in Figures 8 and 9 is indeed a nonlinear effect,
rather than just a result of the lattice periodicity, we simulate the evolution of
the intensity structure of exactly the same input beam, in identical periodic
system, but with nonlinearity turned off. The results are shown in Figure 10,
which clearly displays the absence of self-trapping, i.e., the beam diffracts.
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Figure 9. Evolution of the Fourier power spectrum of an incoherent beam in a (1 + 1)D
nonlinear waveguide array. The initial Gaussian-like power spectrum becomes multihumped,
with humps being located mainly in the normal diffraction regions of the first two Brillouin
zones.

7.2. Evolution in a (2 + 1)D system

Previous numerical simulations in 1D models have shown that an incoherent
beam with initially simple structure of the intensity and the power spectrum may,
under proper nonlinear conditions, evolve into a beam with characteristics of
an RPLS, e.g., with multihumped power spectrum. However, the experimental
study of this system was performed in a (2 + 1)D photonic lattice, which
motivates us to study the evolution of an incoherent beam in a (2 + 1)D
model. The experiment was performed in an optically induced lattice in a
photorefractive SBN:75 crystal, where the potential V (r, z) from evolution
equations (4) and (6) has the form

V (r, z) = −1

2
n3

er33V W −1

[
1 + Il(r)

Ib
+ Ip(r, z)

Ib

]−1

. (19)
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Figure 10. Linear dynamics (diffraction) of an incoherent beam in a lattice; input intensity
structure and other properties are identical to the beam from Figure 8.

In our system, ne = 2.3 is the linear index of refraction, r33 = 1022 pmV−1 is
the electro-optic coefficient, W = 6 mm is the transverse width of the crystal;
the wavelength of the light is 488 nm in vacuum; I l(r) denotes the intensity
of the lattice-forming beams, I p(r, z) is the intensity of the probe, while I b is
the intensity of the background illumination. The voltage V applied across
the crystalline c-axis can be used to control the strength and the sign of the
nonlinearity [45].

The photonic square lattice is formed by interfering four plane waves;
the intensity structure of the lattice-forming beams is of the form I l(r) =
I l0[cos(x − y)π/D − cos(x + y)π/D]2, where the lattice constant is D =
11.5 µm; the peak intensity of the lattice beams is I l0 = 0.28I b, while the
peak intensity of the input (probe) beam is I p0 = 0.15I b. The voltage is set
to 780 V. The input beam has a Gaussian intensity structure, and a Fourier
power spectrum, which roughly homogeneously covers a circle with radius of
approximately 1.5π/D (Figure 11). Thus, all of the first BZ, and a large portion
of the second BZ are excited. Figures 12 and 13 depict the evolution of the
intensity structure and the Fourier power spectrum, respectively, at four equally
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Figure 11. (a) The intensity structure and (b) the power spectra of a two-dimensional
incoherent beam at the input face of the medium. For comparison, (c) shows the Fourier
power spectrum of a fully coherent beam with the same intensity structure. Solid lines in (b)
and (c) depict the edges of the first two Brillouin zones.
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Figure 11. Continued.

spaced positions along the propagation axis: (a) z = 5, (b) 10, (c) 15, and (d)
20 mm. Clearly, the input Gaussian intensity structure from Figure 11(a) has
evolved into an RPLS intensity structure, that covers four lattice sites with a
large amount of the intensity, and six adjacent lattice sites with a bit less
intensity (see Figure 12(d)). During the initial transient stage of the evolution,
the beam has self-adjusted its properties and conformed its intensity structure
and the Fourier power spectrum with the lattice periodicity. A small amount of
power was radiated from the beam during this process. However, after this
transient period, the beam stays self-trapped, and evolves as a solitary wave.
Again, the evolution of power spectrum is the most interesting. Power is
transferred from the anomalous diffraction regions of the 1st BZ into the normal
diffraction regions of the 2nd BZ, so that the acquired power spectrum has a
characteristic RPLS multihumped shape (Figure 13). When the nonlinearity is
turned off, an identical input beam diffracts, and stationary propagation does not
occur.

The numerical simulations discussed above show that one can obtain
self-trapped (stationary) beam evolution even with a beam that initially has a
simple structure in real and in Fourier space. The physical mechanism behind
this is the fact that nonlinearity transfers the energy between the modes of a
linear system. While the details behind this energy transfer are still under
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Figure 12. Propagation of the intensity profile of an incoherent beam in a (2 + 1)D nonlinear
waveguide array. The beam is self-trapped and evolves for many diffraction lengths without
broadening; the beam covers 4 + 6 lattice sites (waveguide arrays).
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Figure 12. Continued.
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Figure 13. Evolution of the Fourier power spectrum of an incoherent beam in a (2 + 1)D
nonlinear waveguide array. The initial roughly homogeneous power spectrum from Figure
11(b) becomes multihumped, with humps being located mainly in the normal diffraction
regions of the first two Brillouin zones (see text).
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Figure 13. Continued.
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investigation, it has been experimentally demonstrated that these ideas can be
further developed to obtain a novel experimental technique for the BZS of
nonlinear photonic lattices [46].

8. Conclusion

In conclusion, we have studied the propagation of partially coherent waves in
nonlinear periodic systems. This problem is universal and appears in various
contexts, such as partially condensed Bose gases in optical lattices (partially
coherent matter waves), temporally incoherent waves in photonic crystals, etc.
In this paper we have focused on recent theoretical [37] and experimental
results [45] related to partially coherent solitary waves in nonlinear waveguide
arrays. It was demonstrated that for these solitons to exist, the properties of the
incoherent light, that is, intensity, power spectra, and coherence (statistical)
properties, must conform to the lattice periodicity. In particular, it has been
shown, theoretically and experimentally, that the power spectra of RPLSs should
be mainly located in the normal (anomalous) diffraction regions of the BZs in
case of self-focusing (defocusing) nonlinearity. Furthermore, the experiment has
shown that an input incoherent beam with simple bell-shaped intensity structure
and power spectrum may (under proper nonlinear conditions) naturally evolve
into an RPLS exhibiting its complex intensity structure and power spectrum.
The new result presented here is the theoretical study of this type of evolution
in both (1 + 1)D and (2 + 1)D geometries, which underpins the experimental
results on RPLSs. The transformation of a bell-shaped power spectrum into
a multihumped RPLS-like power spectrum is allowed by the proper type of
energy transfer between the modes of the linear system, which occurs when
suitable nonlinear conditions are met. All these examples highlight the fact
that partially coherent waves propagating in nonlinear periodic structures are
fundamentally intriguing and rich dynamical systems. The progress on the
experimental front holds much potential for applications. In particular, the
studies presented here opened the way for a novel experimental technique of
BZS [46].
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saptial solitons on a partially incoherent background, Phys. Rev. Lett. 84:2374 (2000).
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