
Dynamical thermal behavior and thermal self-
stability of microcavities 

Tal Carmon, Lan Yang, and Kerry J. Vahala 
Department of Applied Physics, California Institute of Technology, Pasadena, California 91125 

tal@caltech.edu 
 

Abstract:  As stability and continuous operation are important for almost 
any use of a microcavity, we demonstrate here experimentally and 
theoretically a self-stable equilibrium solution for a pump-microcavity 
system. In this stable equilibrium, intensity- and wavelength-perturbations 
cause a small thermal resonant-drift that is enough to compensate for the 
perturbation (noises); consequently the cavity stays warm and loaded as 
perturbations are self compensated. We also compare here, our theoretical 
prediction for the thermal line broadening (and for the wavelength hysteretic 
response) to experimental results. 
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where the first equation describes heat dissipation from the mode volume to the cavity structure and the 
second equation describes heat dissipation from the cavity structure to the surrounding. Here Cp1 is the 
thermal capacity of the mode volume, Cp2 is the thermal capacity of the cavity structure, K1 is the thermal 
conductivity between the mode volume and the rest of the cavity, K2 is the thermal conductivity between the 
cavity and the surrounding,  

1T∆  is the temperature difference between the mode volume and the rest of the 

cavity and 
2T∆  is the temperature difference between the cavity and the surrounding. 
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1. Introduction 

As spherical cavities [1] and toroidal cavities [2,3] composed of silica offer low optical losses 
(high Q factors) together with mode volume as small as 3100~ λ  and negligible pump-device 
coupling-losses [4,5]; they possess a superb figure of merit for study of a diverse set of optical 
phenomena. This includes quantum-nondemolition measurements [6,7], generation of non-
classical states [8,9], quantum information research [10], Raman scattering [11], lasing [12-
14], parametric oscillation [15], cavity quantum electrodynamics [16,17], biosensing [18,19] 
and other optical effects [20]. However, small mode volume also makes these devices 
susceptible to thermal induced nonlinearities [21]. This is because power lost through 
absorption within the down-scaled resonator must now dissipate through a smaller surface 
area. As a result cavity heating cannot be neglected and the thermal drift of the cavity optical 
resonance can easily exceed 100 cavity linewidths. A wide range of thermal-induced 
phenomena such as hysteretic wavelength response [1,22] and oscillatory instability [21] were 
experimentally reported, however, this behavior was not modeled into a dynamical formula 
before as far as is known to the authors. In addition, for most applications of microcavities, 
including all of the above cited applications, [6-22], a frequency-stable operation is desirable 
in the presence of thermal instability. 

Here we formulate the dynamical thermal behavior for microcavity systems. The 
equations of motion explain hysteretic wavelength response, thermal line broadening and the 
existence of equilibrium solutions, one of which is particularly important because it is self 
stable. When operating in the self-stable regime the system automatically corrects for drifts 
and deviations. We verify experimentally each of the above theoretical predictions. In 
particular, we demonstrate theoretically and experimentally a method for self-stabilization 
based upon thermal nonlinearity. 

2. Microcavity dynamical thermal-behavior 

A simple scaling argument explains why thermal effects are immaterial when using large 
cavities, however, cannot be neglected when using microcavities. Down scaling has the side 
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effect of a temperature increase, T∆  (relative to the ambient temperature) which scales as 
2/1 lT ∝∆ . This is because heat goes out of the cavity through the surface area, which is now 

2l  smaller [23]. Scaling down the cavity size will also make the thermal time constant (
tht ) 

faster as the first power of down scaling (tth l∝ ). This is because the thermal response time is 
proportional to the heat capacity divided by the heat conductivity.  As the thermal effects 
become larger and faster with the down scaling, the temperature change induces a change in 
the cavity optical path (through the thermal expansion coefficient and the thermal change of 
the refractive index). 

The reason for making smaller microcavities is the fact that the figure of merit for most 
optical process is scaled inversely with the mode volume. Here we will address the 
temperature increase that results by this cavity downscaling. We will first formulate the 
governing dynamical thermal-equation for the microcavity. Afterwards we will search for 
steady state solutions in which there is a stable balance between the heat that goes into the 
cavity and the heat that goes out of the cavity. 

When the cavity medium has an expansion coefficient of ε  (units: )/( 0Cmm   ) and 

refractive index temperature coefficient of dTdn / (units: C0/1   ) it follows that the N-th 
resonant wavelength ( rλ ) must obey:  
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where r is the cavity radius, c1 contains the waveguide propagation-constant and the fact that 

the light rotation-radius is slightly smaller than the cavity radius; 0n is the cavity index of 

refraction and T∆  is the temperature difference between the mode volume and the 
surrounding. We extract the resonance wavelength as a function of the temperature to obtain 
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Here 0λ  is the cold cavity resonance-wavelength. For simplicity, we now define a 

temperature coefficient of resonance-wavelength, 
0/ n

dT

dn
a +≡ ε , which contains both thermal 

expansion and the thermal index change. For fused silica we calculate the temperature 
coefficient of the resonance-wavelength to be ]/1[106 06 Ca −⋅= [24]. The quadratic 
temperature dependence in the above expression is negligible in our case. 

Heat that flows into the cavity is a function of (i) the pump power (I), (ii) the optical 
power coupling efficiency (η ), (iii) the fact that only losses due to optical absorption (i.e., as 
opposed to scattering) take part in warming the cavity,  and (iv) the deviation of the pump 

wavelength ( pλ ) from the thermally-drifted Lorentzian lineshape of the cavity [4]. The net 

heat flow [J/second] into the cavity is therefore: 
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Here 
absQ is the cavity quality factor due to absorption losses only (since scattered light 

does not heat the cavity) and λ∆  is the resonance bandwidth ( λλ ∆= /0Q ). In the second 

row of this equation we define the power that actually heats the cavity as 
absh QQII /η≡ and 

also use the temperature dependent expression for rλ  as describes in Eq. (2). 
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From energy conservation, the net heat to the cavity is the heat that goes in ( inq� ) minus 

the heat that goes out ( outq� ): 
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Here Cp is the heat capacity ( CJ 0/ ) and K  ( )/( 0CsJ ) is the thermal conductivity between 
the cavity mode volume and the surrounding. Various sources of noise, such as microcavity 
thermorefractive noise [25], pump fluctuations and others can now incorporated into equation 
4 to test their influence. 
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Fig. 1. Dynamical thermal behavior of a toroidal microcavity (a) As the pump makes a sA
o

/46  wavelength scan 
(upper red) it approaches the cavity resonance (upper blue) and cause a thermal drift of the resonance line. In the 
upper plot, the right ordinate describes the temperature of the mode volume relative to the ambient temperature   and 
the left ordinate gives the pump wavelength and cavity resonance wavelength (relative to the cold resonance). The 
pump-cavity transmission is presented as a function of time (middle) and as a function of the pump wavelength 
(bottom). Here blue dots represent experimentally measured data and lines stand for calculations. The parameters 
used for the fit are CKI o

h 16.7/ =  and sCCpI o
h /18000/ = . The cold resonance wavelength of the 

microcavity is nm15450 =λ  and its quality factor is 7102×=Q , the pump power was 1.8 mW. (b) To emphasize 

fine details, we repeat the same calculation but using a reduced Q  ( 5105×=Q ), For convenience, the cavity 

FWHM is marked on the cavity resonance wavelength (top blue). 
 
We note here that the most precise description for this system is provided by the 3D 

Laplacian heat-transfer equation in which I and T∆ are functions of time and spatial 
coordinates (t,x,y,z) and K , Cp are functions of spatial coordinates (x,y,z). Il’chenko [21], 
however, points out that there are two types of thermal nonlinearities, a faster one connected 
with heat dissipation from the mode volume to the remainder of the microcavity structure and 
a slower one connected with heat dissipation from the microcavity to the surrounding. 
Typically, (for a sphere with diameter=0.14 mm) the fast mechanism response time is a few 
microseconds while the slow mechanism response time is tens of milliseconds. The fast 
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mechanism index-change is about 3 percent of the slow mechanism. Considering this, when 
treating a system over a broad range of time scales we would need to split Eq. (4) into two 
parts [26]. This two-stage treatment, together with other high order effects, such as the cavity 
charging time ( ωτ /Q= ), coupling between different modes, Kerr nonlinearity, and stress 
induced index change will not be treated here. 

We will now examine the cavity dynamical thermal-behavior (Eq. (4)) by comparing the 
experimentally measured cavity transmission during a wavelength scan to the calculated 
transmission. As we will show below, for the time scales presented in this paper, Eq (4) 
properly describes our cavity thermal behavior. In Fig 1(a) we present the measured 
transmission together with the calculated cavity transmission, cavity temperature and cavity 
resonant wavelength during up and down wavelength scans of the pump laser. The fit 
parameters for the calculation were the heat capacity and heat conduction (normalized to the 
absorbed power); these parameters are comparable with a simple calculation based on cavity 
dimensions and thermal properties.. We see in Fig 1(a) that as the pump wavelength 
approaches the cavity tail (at mst 2= ) the cavity starts to heat up. As a result, the cavity 
resonance wavelength drifts away from the pump wavelength ( mst 162 0

0= ). The cavity 

temperature rise terminates when the pump wavelength reaches the center of the drifted 
absorption line ( mst 16= ). At this point, the absorption is maximal and cannot increase 
further to compensate for heat dissipation. Beyond this point, the pump cannot push the cavity 
resonance further and the resonance is lost as it quickly drifts down. Later, when the pump 
wavelength begins the backward scan ( mst 19= ) it meets the cavity resonance again but at 
this time from the other direction.  The cavity resonance then ( mst 32= ) quickly flips sides 
with the pump yielding a hysteretic response.  

 

 
Fig. 2. (2.4 MB) Movie of the cavity wavelength response (6.6 MB version). The scanning-
pump (red) induces thermal drift of the resonant lineshape (blue). The intersection point 
between the pump line and the cavity Lorentzian draws the hysteretic absorption (black). 
Parameters here are identical to the parameters in Fig. 1(b). The movie is in slow motion as 
each scan cycle truly takes 80 ms 

 
The back-scan measured transmission does not go to minimum because of the scan rate across 
the cavity lineshape is sufficiently fast to prevent full “charging” of the resonator. The 
hysteretic behavior of the cavity results from the fact that the resonance wavelength will 
always shift upward when approached by the pump. No matter whether the resonance is 
approached (by the pump) from high wavelength or from low wavelength sides, the resonance 
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will always drift to the high wavelength! This hysteretic behavior is best exemplified in Fig 2 
(multimedia). 

3. Steady state solutions 

In steady state there is an equilibrium between the absorbed- and dissipated-heat.  If this 
balance is a stable equilibrium, then the cavity can operate continuously in that regime and 
overcome perturbations (as for example are caused by power- and wavelength-perturbation of 
the pump). On the contrary, if the equilibrium is an unstable one, the smallest perturbation 
will lead to temperature change that will take the system far away from this equilibrium.  We 
will investigate the equilibrium solutions for Eq. (4): 
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As Eq. (5) is cubic in T∆ , it has one to three equilibrium solutions  (for a given pump power). 
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 Fig. 3 Equilibrium solutions: (a) Presented are the resonant thermal wavelength-drift (left 
ordinate) and the cavity temperature (right ordinate, relative to the ambient temperature) at 
equilibrium for various values of pump wavelength (horizontal axis). The 3 distinct 
equilibrium regimes are color coded. On the right (b, c, and d), we illustrate a solution-triplet 
for the pump position shown in the left panel. (Parameters are as in Fig. 1(b)) 

 
These solutions are drawn in Fig 3 for various values of pump wavelength (

pλ ). We can 

see in Fig. 3, that as the pump wavelength increases, the number of equilibrium solutions goes 
from 1 to 3 (and then back to 1). Consider as an example a pump wavelength shifted by 0.56 
angstrom relative to the cold-cavity resonance. The corresponding equilibrium thermal drift of 
the resonance can be either 0.58, 0.52 or 0.01 angstrom with corresponding cavity 
temperatures of 6.3, 5.7 and 0.1 0C (above ambient temperature). We will now describe the 
stability of such an equilibria triplet:  
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1) Stable warm-equilibrium: In the first equilibrium (Fig. 1(b)) the cavity Lorentzian is on the 
right side of the pump line. This is a self-stable equilibrium since a small pump power 
decrease will reduce the cavity temperature and consequently the cavity wavelength will 
drift to the left; this will increase the absorbed power and hence will compensate for the 
pump reduction (an increase in pump power will cause a small compensation to the other 
direction).  

2) Unstable warm- equilibrium: In the second equilibrium (Fig. 1(c)) the cavity Lorentzian is 
on the left side of the pump line. This equilibrium is unstable since a small reduction in the 
pump power will cause the cavity to cool down and the resonance wavelength to drift to 
the left. The subsequent reduced absorption will cause faster cooling and increased drift 
until the resonance reaches the trivial cold equilibrium solution described below. 
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Fig. 4. Numerical calculation of dynamical noise response at equilibrium. (a) Warm stable-
equilibrium: The stable warm equilibrium is reached by an upward wavelength scan, stopping at a 
pump wavelength of 0.56 angstrom above the cold resonance. In this equilibrium, the system 
overcomes Gaussian noise in the pump wavelength (with amplitude of one cavity width). The 
noise spectra is of random amplitude and spread Gaussianly in the Fourier space having FWHM of 
100 KHz around the DC.  (b) Unstable warm equilibrium: Starting in the unstable warm 
equilibrium (pump wavelength 0.56 angstrom and cavity thermal-drifted resonance 0.52 angstrom 
above the cold resonance), the smallest positive noise will take the system to the warm stable-
equilibrium; while the smallest negative noise will take the system to the cold stable-equilibrium. 
Noise here is smaller than 1/1010 of the cavity FWHM. In this figure all parameters are as in Fig 
1(b) (except for the pump wavelength), Figs. 2 and 3. All temperatures are relative to the ambient 
temperature and all wavelengths are relative to the cold cavity resonance. 

 
3) Stable cold-equilibrium: In the third equilibrium (Fig. 3(d)) the cavity Lorentzian is far 

away from the pump line. Practically, no energy is absorbed by the cavity and hence this 
solution is not so interesting.  
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Practically speaking, reaching the warm stable-equilibrium is easiest by setting the pump to a 
wavelength smaller than the cold-cavity resonance and then starting to scan upward. 
Approaching from the other direction will pass through the unstable warm-equilibrium from 
which the system will almost immediately flip to one of the two stable-equilibria. 

We will now demonstrate (first numerically and then experimentally) the system response 
to noise at different equilibria. When in stable equilibrium, the system will average out noise 
that is much faster than the thermal response time and will stay in quasi steady state when 
exposed to noise much slower than the thermal response time. both types of noise were 
included in our calculation. 

In Fig 4(a) we show (numerically) that when a pump-cavity system is in a stable warm-
equilibrium, it can overcome large fluctuations. We solve Eq. (4) for an up scan that takes the 
system reliably to the stable warm-equilibrium as noted above. The scan is stopped at a pump 
wavelength of 0.56 angstrom. It is apparent that large amplitude fluctuations are overcome 
and the system transmission remains low. On the other hand, the system cannot remain at the 
unstable equilibrium shown in Fig. 4(b) and noise that is 10 orders of magnitude smaller than 
in the former stable example (Fig. 4(a)) is enough to make the system flip to one of the two 
stable equilibria. 

Cavity stability is demonstrated experimentally in Fig 5.  Therein, we show an extremely 
slow up scan (Fig. 5 t<100s) that stops at a warm stable-equilibrium. In order to demonstrate 
experimentally that perturbations are compensated; we create a strong temporal perturbation 
in the pump power by knocking on the optical table (Fig. 5 inset); this leads to a change in the 
coupling efficiency.  Despite the size and the relatively long duration of this perturbation, the 
system is stable again almost immediately after the perturbation stops 
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Fig. 5. The wavelength response for a slow scan (0.002 sA /0 ) possesses a stable, warm 
equilibrium during the upward wavelength scan.  A fast pass through resonance occurs during the 
downward wavelength scan (note that we zoom in here and show only a fraction of the 
wavelength scan). When in the warm stable equilibrium (in a region near 20 s in the scan), the 
system can recover from a perturbation as shown in the inset. We used a spherical cavity with a 
diameter of 0.26mm and 6102×=Q . 

 
On the other hand, as described theoretically above, when we down scan downward towards 
the resonance (Fig. 5, t>100s) then it is not possible to stay at the warm equilibrium. It is 
important to note here that while self stability can compensate for various types of noise, it 
can not compensate a continuous slow drift; as for example, a room temperature change of 
few degrees. Hence, it is useful to combine the thermal self stabilization with another control 
system [27] so that the control system will compensate for slow drifts and the thermal 
compensation will compensate the other noise. 
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4. Conclusions 

Here we derived the equation for the dynamical thermal behavior of a microcavity and explain 
the microcavity line broadening and it’s hysteretic wavelength response. As the thermal drift 
of the resonant (for a ~1 mW loaded microcavity) is typically more than 100 times the 
resonant width, thermal effects must be taken into account. Significantly, we showed 
theoretically and experimentally that a stable equilibrium exists in which perturbations are self 
compensated. This equilibrium is useful in both laboratory work and even potentially in 
commercial applications of these devices 
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