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is both spatially and temporally incoherent. 
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1. Introduction 

Allan Turing was the first to recognize that organized structures can form spontaneously, from 
noise, transforming a homogenous state into intricate patterns [1]. Spontaneous pattern 
formation is a universal phenomenon appearing in diverse systems. Patterns have been found 
in formations of soil [2], vegetation structures [3], sand [4], nonlinear optical systems [5-6], 
and many others. This universal phenomenon often occurs in nonlinear systems with 
feedback. In optics, the most common system with feedback is a nonlinear optical cavity, 
which supports versatile nonlinear phenomena, e.g., pattern formation [5,6], cavity solitons 
[7-10], chaotic dynamics [5], etc. The dynamics in an optical cavity is driven by the 
interference of waves. However, interference (and hence the dynamics) can be considerably 
affected, or even completely suppressed, if the light circulating in the cavity is partially 
incoherent. This avenue of research, the study of nonlinear phenomena in cavities with 
statistical light, has not been addressed until recently.  Two years ago, our group has studied 
pattern formation upon a spatially coherent light beam circulating in a (passive) cavity that 
was longer than the coherence length of the light [11,12], so that interference terms between 
beams from different cycles did not contribute to the nonlinear index change.  The emerging 
patterns in that experiment exhibited spatial line narrowing with increasing feedback, 
resembling the line narrowing in lasers, and reminiscent of other order-disorder phase 
transition phenomena. That experiment, conducted with spatially-coherent light, motivated the 
first theoretical study and the prediction of cavity pattern formation with spatially-incoherent 
light [13]. Here, we present the first experimental study of spontaneous pattern formation in a 
nonlinear optical cavity in which the circulating light is both spatially and temporally 
incoherent.  
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Fig. 1. The experimental setup. 
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Our experimental system is a passive ring cavity containing a non-instantaneous 
nonlinear medium, while the light circulating through the cavity is partially spatially and 
temporally incoherent. The characteristic length-scales of the system are (i) the length of the 
cavity feedback loop, 0.5=cavityl m, (ii) the length of the nonlinear medium in the cavity, 

lmedium ~ 5mm, (iii) the temporal coherence length of the light, lcoh ~ 5cm, and (iv) the spatial 
correlation distance, lspat , of the light, whose value can be varied from several wavelengths 

(λ = 488 nm) to the limit of fully spatially coherent light (lspat → ∞). It should be emphasized 

that the longitudinal length-scales are ordered as lmedium << lcoh <<  lcavity
. Because of the condition 

cavitycoh ll  <<   , the fields that have circulated through the cavity a different number of cycles are 

completely incoherent with one another, that is, their phases fluctuate in an uncorrelated 
fashion. Furthermore, every one of these fields is partially spatially-coherent. Here we 
demonstrate that, in spite of this lack of coherence, organized spatial patterns can form 
spontaneously from noise. The patterns are typically periodic, with a periodicity several times 
larger than the spatial correlation distance lspat

.  

2. Experimental setup 

The experimental setup used in our experiments is illustrated in Fig. 1. The nonlinear medium 
within the cavity is a normal-cut photorefractive Sr0.6Ba0.4Nb2O6 crystal (SBN60), with a 
surface reflectivity of 0.17, employing the screening nonlinearity [14]. The surfaces of the 
crystal were cut in different angle so it will not function as an etalon. A spatially incoherent 
beam is produced by sending a coherent 488 nm Ar+ laser beam through a rotating diffuser. 
This pattern-forming beam (henceforth denoted “signal beam”) is then made extraordinarily-
polarized with respect to the crystalline axes of the photorefractive uniaxial crystal (so as to 
utilize the largest nonlinear coefficient), and is launched into the cavity. The instantaneous 
intensity 2|),(| tE r  of the incoherent light consists of randomly fluctuating speckled patterns; 
where E  denotes the electric field of the incoherent light. However, because the response time 
of the nonlinear medium τmedium  is much longer than the coherence time /clcoh

  (the 

characteristic time of random fluctuations), the medium responds to the smooth time-averaged 
intensity 

mediumtrEtrI τ>=< 2|),(|),( ; the time-average is taken over the response time τmedium . 

In addition to the signal beam, we also launch a second, “background”, beam (whose intensity 
is

bI ), which is used to set the degree of saturation of the photorefractive screening 

nonlinearity [14-16,19]. The background beam is uniform in space and is co-propagating with 
the pattern-forming beam everywhere in the cavity. To suppress possible modulation 
instability upon this background beam, we set it to be ordinarily-polarized (polarized 
orthogonally to the signal beam), which corresponds to a very small nonlinear coefficient 
[16]. We also make the background beam highly spatially-incoherent (with a spatial 
correlation distance much shorter than that of the signal beam), so that the background beam 
is always below the instability threshold [16,17]. Thus, the background beam remains 
spatially uniform, and does not affect the patterns emerging upon the pattern-forming beam 
(apart from setting the degree of saturation of the nonlinearity). The screening nonlinearity is 
of the form )/1/()()( bIIIIn +−= γηδ   [19,12],  γ  being the strength of the nonlinearity, which is 

proportional to a transverse DC electric field applied on the crystal. The function )(Iη  is 
defined as 

∫
−− +=

D

bIxIdzDI/
0

11 )/)(1()(1 η  [19]. This term is especially relevant for the analysis of 

modulation instability [17], as well as for dark solitons [19], where the illumination of the 
whole crystal by the signal beam significantly changes the photocurrent and consequently the 
nonlinearity [19]. Note that the nonlinear index change depends on the ratio between the 
signal and the background beam 

bII / , which in our cavity does not depend on the feedback 

parameterε . 
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We construct the feedback loop by taking both the signal and the background beams from 
the output face of the nonlinear crystal and imaging them (with 1:1 magnification) back onto 
the input face, forming ring cavity circulating light in the counter-clockwise direction (Fig. 1). 
The input face of the crystal is slightly tilted to eliminate back reflections (that otherwise 
could have given rise to light circulating also in a clockwise direction).  The feedback loop is 
constructed so that the feedback beams entering the nonlinear crystal is properly aligned with 
the input beam with no relative tilt between the beams. To do that, we use a 4f system and two 
dove prisms (one horizontal and one vertical) in the feedback loop (see Fig. 1).  We construct 
dove prisms from mirrors (rather than use standard Dove prisms made of glass), to eliminate 
polarization-dependant reflections. We verify that the imaging is truly 1:1 by imaging a test 
object (a thin wire) back on itself, and tune the dove prisms so that the feedback loop does not 
introduce any tilt or translation. By using a beam splitter in the loop, we split a small fraction 
of the circulating beam and image the intensity pattern at the output face of the crystal onto a 
CCD camera. The attenuation of intensity in the loop is controlled with a variable attenuator. 
It should be emphasized that the intensity structure and statistical properties of the light 
evolve only while propagating in the nonlinear medium. The statistical properties are 
unchanged when the light is imaged from the output to the input face of the SBN crystal. The 
intensity is attenuated in the feedback loop, but its structure is preserved. The cavity finesse is 
low (~1), hence, the cavity does not act as a filter to increase the temporal coherence. It is 
important to note here that all of the components in the feedback loop are polarization 
independent. This ensures that the ratio 

bII /  between the (orthogonally polarized) signal ( I ) 

and background (
bI ) beams stays constant within the loop. Furthermore, because both beams 

are recycled in the loop, the ratio 
bII /  does not depend on the feedback parameterε . 
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Fig. 2.  (Movie 2.5 MB) Top row: Intensity patterns at the output of the crystal, with and 
without feedback; the strength of the nonlinearity is increased from left to right. Plot:  
Modulation depth of the emerging pattern as a function of nonlinearity for different values of 
feedback. 

3. Experimental results and discussion 

Typical photographs depicting the intensity structure of the light emerging from the cavity are 
shown in two rows in Fig. 2. The upper (lower) row of photographs corresponds to feedback 
value of 28% (0%), while the strength of the nonlinearity ( γ∝∆n  ) increases from left to 
right. We see the formation of organized periodic patterns as the nonlinearity is increased. The 
pattern periodicity is another spatial length-scale, which emerges spontaneously (from noise) 
in the system. It is therefore important to compare it with the inherent characteristic spatial 
length-scale of the system: the spatial correlation distance lspat

. In order to verify that the 

correlation distance lspat
 is shorter than the pattern periodicity (and hence the optical field 

values within adjacent features of the periodic pattern are uncorrelated), we compare the 
characteristic intensity structure of a periodic pattern (Fig. 3, upper photograph) to the highly 
speckled photograph of the instantaneous intensity of the incoherent light 2|),(| tE r  (Fig. 3, 
lower photograph). This photograph of the instantaneous intensity is obtained by stopping the 
rotating diffuser, and capturing the speckled pattern (this measurement was taken when the 
crystal is temporally removed in order to eliminate distortion caused by the nonlinearity of the 

(C) 2004 OSA 26 July 2004 / Vol. 12,  No. 15 / OPTICS EXPRESS  3485
#4456 - $15.00 US Received 27 May 2004; revised 14 July 2004; accepted 17 July 2004

http://www.opticsexpress.org/view_media.cfm?umid=8902


medium). The average size of the speckles approximately corresponds to the spatial 
correlation distance [20]. From Fig. 3, we find the spatial correlation distance to be 
approximately lspat = 20  µm, which is ~4 times smaller than the pattern periodicity. From this 

data, we conclude that the optical field values within adjacent features of the periodic pattern 
are uncorrelated.  
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Fig. 3. Upper picture: Characteristic (time-averaged) intensity pattern. Lower picture: The 
highly speckled structure of the instantaneous intensity of the incoherent beam obtained by 
stopping the rotating diffuser, and capturing the speckled pattern. The average size of the 
speckles, which corresponds to the spatial correlation distance, is several times smaller than the 
pattern periodicity 

 
The points in the plot of Fig. 2 represent the modulation depth (m) of the patterns as a 

function of ∆n , for different values of feedback. We estimate the modulation depth of the 
patterns as 

A
IIm /∆= , where 

A
I   is the mean value of the intensity structure over a broad 

area of space, A, while I∆  is the standard deviation. We took more than 100 such 
measurements to characterize the pattern formation process. For all three sets of 
measurements, at values of nonlinearity below 0003.0≈∆ thn , the visibility is negligible, i.e., 

the uniform-intensity beam circulating in the cavity is stable. Increasing n∆  beyond the 
threshold value leads to instability and to the formation of low-visibility patterns. We have 
recoded the pattern formation process in our cavity as it evolves with time, and show it in the 
attached movie depicting the intensity structure at a section of the output face of our nonlinear 
medium. The movie starts with feedback loop being blocked, that is, the patterns correspond 
to the single pass system. Afterwards, the cavity feedback (of 28%) is turned on, and we 
observe the amplification of the modulation depth and the enhanced organization of the 
patterns in the cavity system, as the photorefractive nonlinearity evolves in time from the 
zero-feedback state to the pattern-supporting state at 28% feedback. Near the end of the 
movie, the feedback is turned off, the modulation depth of the patterns decreases, while they 
become less organized in comparison to the cavity system.  

From our experimental results we conclude that the instability threshold in our cavity is at 
the same value (within the experimental errors) as in the corresponding single-pass system 
[17-19,21-23] [i.e., keeping all parameters identical varying only the feedback value]. This 
feature is in direct contrast to coherent feedback systems, where the pattern formation 
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threshold is critically dependent on the feedback [5], and the (coherent) feedback can suppress 
modulation instability occurring in a corresponding single-pass system [5]. The feedback in 
our cavity affects the system after the instability has already occurred. For larger values of 
feedback, the visibility increases at a faster rate, the patterns are more regular, while the 
visibility saturates at a larger value.  

Inspecting Fig. 2, we observe that the feedback makes the pattern more regular, having a 
well-defined periodicity (compare images in the first row to those in the second row). 
Consequently, the spatial bandwidth of the pattern narrows as feedback increases (as in Ref. 
[11], which was conducted in a cavity with spatially-coherent light). The visibility in our 
experiment can go up almost to unity, when the nonlinearity is strong enough. However, since 
the light in our experiment is spatially-incoherent, the pattern forms when the nonlinearity 
compensates not only for the diffraction broadening of the stripes (arising from their finite 
width), but also for the diffusive tendency of the incoherence that works to wash the pattern 
out [13]. This is in contrast to Ref. [11], where the latter process simply does not exist 
(because the light in [11] was spatially coherent). The direct implication is that the pattern-
formation threshold in an incoherent cavity (the current experiment) is higher than that in a 
spatially-coherent cavity [11], for the same values of the other parameters (e.g., the feedback 
value, etc.). 

4. Conclusion 

In conclusion, we have presented the first experimental observation of pattern formation in a 
nonlinear optical cavity with both spatially and temporally incoherent light, and analyzed the 
influence of the non-correlated feedback and spatial de-coherence on this process. Studying 
the dynamics of statistical (partially coherent) waves in nonlinear feedback systems brings 
about a new direction. The commonly studied limit is when the coherence length scales are 
much longer than the characteristic size of the cavity (

cavitycoh ll >> ). We have analyzed the 

dynamics in the opposite limit,
 cavitycoh ll  << . However, a whole class of intermediate systems 

that may yield the most interesting dynamics is yet unexplored. We expect that cavities with 
loop-length comparable to the temporal coherence length will lead to interesting phenomena 
(possibly phase-dependent chaos) driven by different tendencies of the coherent and de-
correlated feedback. In this sense, our experiment bridges the gap between pattern formation 
processes, which are naturally phase-transition phenomena, in correlated (coherent) systems 
and uncorrelated (incoherent) systems, thereby exemplifies the similarities and differences 
between the instabilities in phase-dependent and phase-independent systems. 
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