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Abstract. We numerically calculate the forms and frequencies of mechanical
whispering-gallery modes in silica shells. Such modes were recently
experimentally observed in water-filled optomechanical resonators, which
constitute a bridge between optomechanics and microfluidics. We consider the
three acoustic mode families of Rayleigh–Lamb waves, longitudinal waves and
Love waves. Our study shows that these acoustic modes have rich velocity
dispersion characteristics and can create considerable deformation of the inner
surface of the shells. In this manner, a novel optomechanical interaction may be
facilitated between fluids and light.
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1. Introduction

Optomechanical oscillators [1–13] present an alternative to electrode-based mechanical
actuation methods. More specifically, in Brillouin optomechanics two optical beams can
interfere to write a train of virtual electrodes at regular separation and at high spatial
and temporal frequencies, which unlike metal contacts are immune to electrical impedance.
Electrostriction, which is common to all dielectrics, can then convert this field to an actuation
force. This mechanism is generally referred to as Brillouin scattering [14, 15] and has rarely
been used as an actuation mechanism in microdevices. Recently, Brillouin scattering was
shown to actuate mechanical vibration in silica microshells filled with water [16]. Here, we
theoretically analyze the modal structure and frequency of the acoustic modes in silica shells
using finite element calculation, revealing a considerable penetration of deformation into the
internal space where fluids may flow.

1.1. Brillouin mechanism for optomechanical actuation and cooling

Stimulated Brillouin scattering (SBS) [14, 15] has been for many years considered as an
optical gain mechanism for lasers [17] and as a tool for optical phase conjugation [18], slow
light [19], non-destructive characterization of materials [20–22] and optical gyroscopes [23].
It is notable that SBS has an optical nonlinearity that is common to all dielectrics in any
state of matter. In many fiber-based communication systems SBS is often considered as an
undesirable interfering mechanism [24]. In addition to optical fibers and bulk materials, SBS
has been demonstrated in fluid droplets [25], nano-spheres [26], photonic-crystal fibers [27],
millimeter-scale crystalline resonators [28] and in microspheres [29]. In all these examples, light
backscatters from hypersound in the material, resulting in a red-shifted (Stokes) optical signal.
In the process, light imparts energy to the acoustic wave and amplifies it. The phase-matching
requirements for SBS specify that the optical modes need to be separated by the energy and
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momentum of the acoustic mode. As a result, for backscattered SBS, the accessible acoustic
frequencies are constrained to be in the 10 GHz regime. In nanoscale resonators [26] this process
was deterred by zero optical finesse, whereas in larger resonators [28, 29] the mechanical finesse
was seen to be very low. Simultaneous resonant enhancement of the optical and acoustic modes
is important as it improves the Brillouin interaction in these systems.

It was proposed recently [30] that reversing the scattering direction from backwards [17]
to forwards [27, 30, 31] would allow access to acoustic whispering-gallery modes (WGMs)
at low frequencies and high mechanical quality factor. Indeed, reversing the scattering
direction to forwards experimentally enabled vibration at hundreds of MHz in amorphous silica
microspheres [32] and in crystalline (LiTaO3 and MgF2) resonators [33]. These low-frequency
acoustic modes were shown to have long phonon lifetimes, up to two orders of magnitude longer
than the photon lifetimes in these high-Q devices [32, 34]. This lengthened phonon lifetime was
in accordance with what is needed for cooling [35], as a result of which spontaneous Brillouin
cooling was experimentally observed [34, 36]. To summarize, Brillouin scattering can excite
mechanical WGMs at vibrational rates from tens of MHz [16, 32, 33] to tens of GHz [28, 29].
In addition, the direction of energy transfer in the Brillouin process can be reversed to support
the cooling of microdevices [34].

The Brillouin optomechanical process involves two optical modes that are separated by
the acoustic resonance frequency. These optical modes can be obtained either by designing
the free spectral range (FSR) of the resonator or by exploiting aperiodic spacing between
high transverse order optical modes in a resonator [32, 37, 38]. Aperiodic spacing between
resonances is particularly helpful in suppressing scattering in the Stokes direction when only
anti-Stokes scattering is desired. This selective filtering capability was also exploited to achieve
spontaneous Brillouin cooling of the acoustic WGMs [34, 36].

1.2. Optomechanics in fluidic systems

Optofluidic devices [39] have been employed as extremely sensitive label-free detectors [40, 41]
for single nanoparticles [42, 43] and viruses [44, 45] in fluid media and also for vapor
identification [46]. These sensors operate on the concepts of optical mode splitting [42] and
optical mode shifts [43, 45, 46], and have also been functionalized with polymers for gas
detection [46, 47].

Prior to recent results [16, 48], optomechanical actuation had not been demonstrated in
the presence of fluids. This is because in liquid-submerged optomechanical devices, acoustic
radiative losses increase on account of the acoustic impedance of liquids being much larger
than that of air. In addition to overcoming the challenge associated with radiative acoustic losses,
these capillary-based systems also provide solutions for delivering small volumes of analyte to
the ‘active’ sensing region of the device. Furthermore, optically opaque fluids can also be used
in these capillary based devices as the optical modes can be kept in the silica while coupled
acoustic vibrations extend into the liquid.

In these studies [16, 48], the authors fabricated hollow microfluidic optomechanical
resonators with fused silica glass, starting from a seed capillary [49]. The capillaries were heated
using CO2 lasers to soften the glass, and pulled lengthwise at a constant rate. Modulation of the
laser power changed the heating of the silica glass, resulting in a modulation of the capillary
radius. In the region of greatest radius (the equator), these devices can confine light effectively,
thereby forming a whispering-gallery optical microresonator. The geometry of these devices is
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Figure 1. Illustration of the main dimensions of the optomechanical resonator.
Numerical calculations in this paper consider a hollow silica shell resonator
with air inside. (a) The optical and acoustic modes are confined at the equator,
illustrated by the dashed circle and radius parameter re. (b) The equatorial cross-
section is portrayed along with a sinusoidal representation of the acoustic wave
of azimuthal order M = 9. The acoustic velocity vs is defined at the surface of
the resonator. � represents the acoustic frequency.

illustrated in figure 1. Light can be coupled evanescently to the optical WGMs using a suitable
tapered optical waveguide (optical fiber) [50, 51].

Acoustic WGMs are confined at the equator in a manner similar to the optical modes.
Since the optical WGMs and acoustic WGMs have considerable overlap in this region, an
optomechanical Brillouin process is supported that can be used to excite [32] or cool [34] the
acoustic modes. Experimentally, mechanical WGMs at frequencies ranging from 99 MHz to
11 GHz [16] were excited in a single hollow device filled with water, using only 160 µW of input
optical power, representing the first bridge between microfluidic systems and optomechanical
systems. These devices have optical quality factor in the range of 108, and no quality factor
degradation was observed when filled with water-based liquids. This is because the optical
mode is confined to the outer periphery of the device (only a few microns deep), while
the liquid is located much deeper inside where it cannot affect the optical properties of the
silica.

While the numerical solutions to optical WGMs in such capillaries are available [52], their
mechanical WGMs [53] have not been analyzed. This paper discusses the form and frequency
dispersion properties of the acoustic WGMs that interact with optical WGMs via the Brillouin
mechanism in such shell-type optomechanical resonators.
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2. Acoustic whispering-gallery modes (WGMs) in shell resonators

2.1. Dimensional and wave-description variables

We define three-dimensional parameters of the capillary-type optomechanical resonators near
the equatorial region where both optical and acoustic modes are confined. rp is the radius of
curvature in the polar (or longitudinal) direction. re is the radius of the capillary at the equator
where the modes are confined. t is the thickness of the resonator walls. These three parameters
are illustrated in figure 1.

In the interest of further constraining the free parameters for numerical calculations, we
select a fixed rp = 1500 µm and re = 50 µm corresponding to the type of capillary in which we
have found it easy to experimentally excite the mechanical WGMs. Our studies indicate that
modifying the rp parameter does not significantly perturb the calculated forms and frequencies
of the acoustic modes.

Similar to the manner in which optical WGMs are represented, we define an integer
momentum parameter M for the acoustic WGMs in the device, which relates to azimuthal
propagation ei(Mφ−�t) around the device equator. Here φ is the azimuthal angular position, and
� is the mechanical frequency. M is therefore equal to the number of acoustic wavelengths
around the circumference of the device.

At high M numbers the acoustic waves do not experience the curvature of the device,
resulting in acoustic velocities that asymptotically converge to the value on planar surfaces.
At low M numbers the acoustic waves are strongly affected by the equatorial curvature of the
device, and the acoustic velocity is therefore modified.

Furthermore, by defining a ratio of shell thickness to the equatorial radius as R = t/re, we
can generalize the acoustic velocity solution for a given R independent of scaling.

2.2. Notes on numerical calculations

The mechanical WGMs described in this paper were numerically solved using eigenfrequency
analysis with COMSOL Multiphysics (Comsol Group, COMSOL Multiphysics). Fused silica
glass was chosen as the shell material. We chose not to include a fluid in our numerical
calculations since the interaction with an enclosed fluid is a secondary effect. That is to say,
light primarily interacts with the solid material of the optical resonator, and the mechanical
mode subsequently interacts with the fluid. The presence of a fluid primarily adds dissipation to
the mechanical mode and shifts the mechanical frequency by means of its viscosity and density,
and is therefore specific to the chosen fluid.

The acoustic phase velocity at the surface is calculated in the manner described in
figure 1(b) via the equation

vs = �
2πre

M
. (1)

For each numerical calculation, the solved mechanical eigenfrequency � and the known
momentum parameter M provide us with vs.

2.3. Three types of mechanical WGMs in optomechanical shells

We investigate three types of acoustic WGMs (illustrated in figure 2) in the shell system, which
are defined by the form of the acoustic waves that compose them. Visualizations of all three
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Figure 2. The three mode families discussed in this paper are comprised of
(a) Rayleigh–Lamb waves where particle motion is elliptical, (b) longitudinal
waves where motion is in the azimuthal direction along the equator and
(c) transverse (Love) waves where motion is in the polar direction. The
calculated modes here have azimuthal parameters of M = 8, which is typically
seen in experiments with such devices. Colors indicate radial displacement
for Rayleigh modes, polar displacement for transverse modes, and azimuthal
displacement for longitudinal modes, respectively (red is positive, blue is
negative, and green is zero). Animated visualizations for the three mode families
are available in the supplementary videos provided with this paper (available
from stacks.iop.org/NJP/14/115026/mmedia).

mode families are provided in the animations that accompany this paper.

1. Rayleigh–Lamb modes comprised of Rayleigh waves (for large R) and Lamb waves (for
small R), where the displacement trajectory of a fixed point on the resonator is elliptical.

2. Longitudinal modes comprised of longitudinal compression waves in the material, where
the major component of deformation is along the azimuthal direction.

3. Transverse (Love) modes comprised of shear waves where the major component of
deformation is transverse to wave propagation, in the polar direction.

For simplicity, we only discuss acoustic modes with one maximum along the plane
transverse to propagation (i.e. first-order modes). All three families of modes create a
photoelastic refractive index change along the equator, resulting in an index grating that light
can scatter from. As these modes travel at their respective speeds of sound, the scattered light
experiences a Doppler shift, according to the theory of Brillouin light scattering.

In solid spheres [53], all three mode families follow a similar trend, i.e. the acoustic phase
velocity at the surface increases at low M numbers. In optomechanical shells, however, the
velocity dispersion characteristics are far more interesting.
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Figure 3. The form of the Rayleigh–Lamb waves. The modes are illustrated for
various shell thicknesses t ranging from 1 to 30 µm (R = t/re ranging from 0.02
to 0.6 since re = 50 µm). The M = 8 modes are calculated here. Colors indicate
the magnitude of displacement of the material (red is the maximum and blue is
zero) and are normalized for each individual mode shape.

2.4. Acoustic velocity dispersion in the Rayleigh–Lamb modes

We numerically solve the Rayleigh–Lamb modes on optomechanical shells as a function of
the azimuthal propagation constant M for various shell thicknesses t . Only WGMs with one
maximum along the plane transverse to propagation, i.e. first-order modes, are considered. The
numerical results for the M = 8 Rayleigh–Lamb waves are illustrated in figure 3. For thick
shells, the wave solutions are similar to the Rayleigh wave solutions for solid spheres [53] since
the surface wave is confined to the external surface of the resonator and does not encounter the
inner free surface. When the shell thickness t is small (or equivalently R is low), the acoustic
wave begins to travel on both surfaces of the shell, thereby taking the form of an anti-symmetric
flexural-mode Lamb wave (figure 3). As a rule of thumb this change occurs when the acoustic
wavelength is of the order of the shell thickness, which is to say that

t ≈
2πre

M
, or alternatively, R ≈

2π

M
. (2)

The transition to the Lamb-wave regime brings about a reduction of acoustic velocity as
seen in figure 4 since the wave now interacts with two free surfaces. It can be seen from figure 4
that the acoustic velocity for a very thin shell of R = 0.02 (i.e. t = 1 µm for re = 50 µm) can be
as low as 140 m s−1 for M = 4.

In the intermediate regime, the acoustic phase velocity can rise above the Rayleigh wave
velocity on planar surfaces (3410 m s−1) just as it does on solid spheres [53]. This is because the
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Figure 4. Velocity dispersion for the Rayleigh–Lamb waves calculated as a
function of M and the frequency–thickness product. At high M , all dispersion
curves approach the Rayleigh wave velocity on semi-infinite planar substrates,
i.e. 3410 m s−1, as indicated by the dashed line. At low M , the stiffness and
acoustic velocity on the shell drop sharply since the acoustic wavelength is
comparable to the shell thickness t .

curvature of the device is more significant at low M , which ‘pushes’ the wave deeper inside the
device, reducing its exposure to the free surface and thereby increasing the material stiffness.
The resulting increase in frequency appears as an increased acoustic phase velocity at the surface
of the device.

2.5. Acoustic velocity dispersion in longitudinal modes

In contrast with bulk media, where longitudinal waves are not surface acoustic waves, the
curvature of the surface here results in their confinement near the interface [29, 53] forming
a longitudinal surface wave.

In solid spheres, at low M numbers the curvature of the device forces these waves deeper
inside the material, thereby increasing the effective acoustic velocity [53]. Here, in the shell
geometry, the waves exhibit interesting behavior in their velocity dispersion as a function of
shell thickness. The numerically calculated acoustic velocities for first-order longitudinal waves
are shown in figure 5. In this calculation, the thickness of the shell t (and hence R) is varied for
fixed azimuthal modal orders M of the acoustic mode.

The reason for this odd trend in acoustic wave velocity can be explained with the help of
figure 6 where the mode shapes are illustrated for M = 8. We see that for very small R 6 0.2,
the shell is thin enough such that the longitudinal acoustic wave travels on both surfaces
simultaneously. In an intermediate region defined by 0.2 < R < 0.6, where the shell thickness is
comparable to the radial depth of the acoustic mode, there is significant anti-phase deformation
of the inner free surface of the shell. This new mode shape is similar to an anti-symmetric (A1)
Lamb wave on a plate, which is slower and results in a sharp drop in the acoustic velocity.
Finally, for thicker shells when R > 0.6, the acoustic wave is free of the inner surface and the
acoustic velocity rises again. As seen in figure 5, the dip in velocity vs occurs at lower values
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acoustic velocity curve for intermediate R numbers is due to the acoustic wave
being shared by two surfaces, and is explained with the help of figure 6.
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Figure 6. Equatorial cross-sections for longitudinal modes of M = 8. Colors
represent azimuthal displacement (red is positive, blue is negative and green is
zero). The seemingly anomalous dip in the acoustic velocity occurs in the case
when the acoustic wave travels on both the inner and outer surfaces of the shell
simultaneously. This resembles an anti-symmetric A1 Lamb wave, which has a
lower velocity.

of R for higher M numbers since the acoustic wavelength is shorter. In contrast with the case
of solid spheres [53] the longitudinal WGMs that arise in shells do obtain vs lower than their
velocity in bulk materials (5848 m s−1) as seen in figure 5.
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velocity at the surface.

2.6. Acoustic velocity dispersion in transverse (Love) modes

The numerically calculated acoustic velocity dispersion for first-order Love waves is shown
in figure 7. In this calculation, only the azimuthal mode order M is varied for various fixed
thicknesses t of the shell.

At high M numbers, where curvature is not a significant perturbing factor, the Love waves
approach their standard acoustic velocity on semi-infinite planar surfaces (3787 m s−1).

At low M numbers, azimuthal curvature forces the waves to propagate radially deeper in
the shell, resulting in an increase in the acoustic phase velocity at the surface. For thick shells
(large R) this behavior is similar to solid spheres [53]. For thin shells, the Love wave velocity
does not change much as there is no material deeper inside the resonator.

In contrast with the longitudinal modes and the Rayleigh–Lamb modes, the acoustic
velocity for Love modes never drops below their acoustic velocity on semi-infinite planar
surfaces.

2.7. Optomechanical coupling

It is important to quantify the optomechanical coupling strength of these shell-type resonators.
It should be noted, however, that the conventional description of optomechanical coupling
coefficient g0 = dω/dx cannot be applied here since the optical modes are not perturbed by
the mechanical mode. The optomechanical coupling strength for a Brillouin optomechanical
system was described in [54], and in the supplement to [34] it was shown that the formulation
can be simplified to

g0 =

(
πγe

2εr

)
· M ·

ωoptical ·
√

h̄

L ·
√

2 · meff · �
, (3)
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where L is the effective equatorial circumference, γe is the electrostrictive coefficient for the
host material, M is the momentum parameter described earlier, � is the acoustic frequency and
meff is the effective mass of the mode. Our calculations in this study show that on thin shells
there is a significant reduction in the effective mass of the acoustic mode as well as its acoustic
frequency, which would result in a magnified optomechanical coupling strength compared with
previously demonstrated solid devices [32–34].

3. Conclusions

Hollow [55–57] optomechanical shell resonators provide a novel platform for optomechanics
with materials in their non-solid phases. In this paper, we have described the form of the three
main acoustic mode families present in optomechanical shells, namely the Rayleigh–Lamb
waves, longitudinal waves and Love waves. The velocity dispersion of these acoustic modes
exhibits a rich behavior, unlike in solid spheres [53] or on planar surfaces. In particular, these
modes exhibit deformation at the inner surface of the shell, far away from the optical mode
which is confined in the outer ∼1 µm of the shell. As a result of these properties several
applications may be enabled.

Specifically, it is proposed [58–60] that a Bose–Einstein condensate (BEC) confined inside
an optomechanical resonator may be used to observe state transfer between Schrödinger fields
and phonon fields. A second application that can benefit from optical excitation and sensing of
mechanical vibration is the detection and weighing of biological and chemical particles in fluid
media [61, 62]. For instance, the inner shell surface can be functionalized with antibodies that
bind to a bio-particle of interest, changing the effective mass of the acoustic mode when the
bio-particle arrives.

Different from other vibrational modes that are commonly used in optomechanics, the
acoustic WGMs [32, 53] that are shown here consist of circulating phonons. Such modes are
therefore generally referred to as acoustic vortices [63–65]. As they carry angular momentum,
the acoustic vortices that we show here can assist in coupling with BEC [66] and superfluid
vortices [67–69].
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[42] Zhu J, Özdemir Ş K, Xiao Y-F, Li L, He L, Chen D-R and Yang L 2009 On-chip single nanoparticle detection
and sizing by mode splitting in an ultrahigh-Q microresonator Nature Photon. 4 46–9

[43] Vollmer F and Arnold S 2008 Whispering-gallery-mode biosensing: label-free detection down to single
molecules Nature Methods 5 591–6

[44] Vollmer F, Arnold S and Keng D 2008 Single virus detection from the reactive shift of a whispering-gallery
mode Proc. Natl Acad. Sci. USA 105 20701–4

[45] Lu T, Lee H, Chen T, Herchak S, Kim J-H, Fraser S E, Flagan R C and Vahala K 2011 High sensitivity
nanoparticle detection using optical microcavities Proc. Natl Acad. Sci. USA 108 5976–9

[46] Shopova S I, White I M, Sun Y, Zhu H, Fan X, Frye-Mason G, Thompson A and Ja S-j 2012 On-column
micro gas chromatography detection with capillary-based optical ring resonators Anal. Chem. 80 2232–8

[47] Reddy K, Guo Y, Liu J, Lee W, Khaing Oo M K and Fan X 2012 Rapid, sensitive, and multiplexed on-chip
optical sensors for micro-gas chromatography Lab Chip 12 901–5

[48] Kim K H, Bahl G, Lee W, Liu J, Tomes M, Fan X and Carmon T 2012 Cavity optomechanics on a microfluidic
resonator submitted (arXiv:1205.5477)

[49] Sun Y, Shopova S I, Wu C-S, Arnold S and Fan X 2010 Bioinspired optofluidic FRET lasers via DNA
scaffolds Proc. Natl Acad. Sci. USA 107 16039–42

[50] Knight J, Cheung G, Jacques F and Birks T 1997 Phase-matched excitation of whispering-gallery-mode
resonances by a fiber taper Opt. Lett. 22 1129–31

[51] Cai M and Vahala K 2001 Highly efficient hybrid fiber taper coupled microsphere laser Opt. Lett. 26 884–6
[52] Oxborrow M 2007 Traceable 2-D Finite-element simulation of the whispering-gallery modes of axisymmetric

electromagnetic resonators IEEE Trans. Microw. Theory Tech. 55 1209–18
[53] Zehnpfennig J, Bahl G, Tomes M and Carmon T 2011 Surface optomechanics: calculating optically excited

acoustical whispering gallery modes in microspheres Opt. Express 19 14240–8
[54] Tomes M, Marquardt F, Bahl G and Carmon T 2011 Quantum mechanical theory of optomechanical Brillouin

cooling Phys. Rev. A 84 063806

New Journal of Physics 14 (2012) 115026 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.103.257403
http://dx.doi.org/10.1103/PhysRevLett.54.939
http://dx.doi.org/10.1038/ncomms1412
http://dx.doi.org/10.1364/OL.36.003338
http://dx.doi.org/10.1038/nphys2206
http://dx.doi.org/10.1103/PhysRevLett.104.083901
http://dx.doi.org/10.1103/PhysRevA.84.063806
http://dx.doi.org/10.1103/PhysRevA.76.023816
http://dx.doi.org/10.1103/PhysRevLett.100.103905
http://dx.doi.org/10.1038/nature05060
http://dx.doi.org/10.1016/j.aca.2008.05.022
http://dx.doi.org/10.1038/nphoton.2011.206
http://dx.doi.org/10.1038/nphoton.2009.237
http://dx.doi.org/10.1038/nmeth.1221
http://dx.doi.org/10.1073/pnas.0808988106
http://dx.doi.org/10.1073/pnas.1017962108
http://dx.doi.org/10.1021/ac702389x
http://dx.doi.org/10.1039/c2lc20922e
http://arxiv.org/abs/1205.5477
http://dx.doi.org/10.1073/pnas.1003581107
http://dx.doi.org/10.1364/OL.22.001129
http://dx.doi.org/10.1364/OL.26.000884
http://dx.doi.org/10.1109/TMTT.2007.897850
http://dx.doi.org/10.1364/OE.19.014240
http://dx.doi.org/10.1103/PhysRevA.84.063806
http://www.njp.org/


14

[55] Sumetsky M, Dulashko Y and Windeler R S 2010 Optical microbubble resonator Opt. Lett. 35 898–900
[56] Lee W, Sun Y, Li H, Reddy K, Sumetsky M and Fan X 2011 A quasi-droplet optofluidic ring resonator laser

using a micro-bubble Appl. Phys. Lett. 99 091102
[57] Berneschi S, Farnesi D, Cosi F, Conti G N, Pelli S, Righini G C and Soria S 2011 High q silica microbubble

resonators fabricated by arc discharge Opt. Lett. 36 3521–3
[58] Zhang K, Chen W, Bhattacharya M and Meystre P 2010 Hamiltonian chaos in a coupled BEC-

optomechanical-cavity system Phys. Rev. A 81 013802
[59] Steinke S K and Meystre P 2011 Role of quantum fluctuations in the optomechanical properties of a

Bose–Einstein condensate in a ring cavity Phys. Rev. A 84 023834
[60] Singh S, Jing H, Wright E M and Meystre P 2012 Quantum state transfer between a Bose–Einstein condensate

and an optomechanical mirror (arXiv:1202.6100)
[61] Burg T P, Godin M, Knudsen S M, Shen W, Carlson G, Foster J S, Babcock K and Manalis S R 2007 Weighing

of biomolecules, single cells and single nanoparticles in fluid Nature 446 1066–9
[62] Barton R A, Ilic B, Verbridge S S, Cipriany B R, Parpia J M and Craighead H G 2010 Fabrication of a

nanomechanical mass sensor containing a nanofluidic channel Nano Lett. 10 2058–63
[63] Lugt H J 1983 Vortex Flow in Nature and Technology (New York: Wiley-Interscience)
[64] Sathaye A and Lal A 2001 An acoustic vortex generator for microfluidic particle entrapment Ultrasonics

Symp., 2001 IEEE vol 1, pp 641–4
[65] Dashti P Z, Alhassen F and Lee H P 2006 Observation of orbital angular momentum transfer between acoustic

and optical vortices in optical fiber Phys. Rev. Lett. 96 043604
[66] Abo-Shaeer J R, Raman C, Vogels J M and Ketterle W 2001 Observation of vortex lattices in Bose–Einstein

condensates Science 292 476–9
[67] Feynman R 1955 Application of quantum mechanics to liquid helium Progress in Low Temperature Physics

ed C Gorter vol 1 (Amsterdam: Elsevier) pp 17–53
[68] Roberts P H and Donnelly R J 1974 Superfluid mechanics Annu. Rev. Fluid Mech. 6 179–225
[69] Marston P L and Fairbank W M 1977 Evidence of a large superfluid vortex in 4He Phys. Rev. Lett. 39 1208–11

New Journal of Physics 14 (2012) 115026 (http://www.njp.org/)

http://dx.doi.org/10.1364/OL.35.000898
http://dx.doi.org/10.1063/1.3629814
http://dx.doi.org/10.1364/OL.36.003521
http://dx.doi.org/10.1103/PhysRevA.81.013802
http://dx.doi.org/10.1103/PhysRevA.84.023834
http://arxiv.org/abs/1202.6100
http://dx.doi.org/10.1038/nature05741
http://dx.doi.org/10.1021/nl100193g
http://dx.doi.org/10.1103/PhysRevLett.96.043604
http://dx.doi.org/10.1126/science.1060182
http://dx.doi.org/10.1146/annurev.fl.06.010174.001143
http://dx.doi.org/10.1103/PhysRevLett.39.1208
http://www.njp.org/

	1. Introduction
	1.1. Brillouin mechanism for optomechanical actuation and cooling
	1.2. Optomechanics in fluidic systems

	2. Acoustic whispering-gallery modes (WGMs) in shell resonators
	2.1. Dimensional and wave-description variables
	2.2. Notes on numerical calculations
	2.3. Three types of mechanical WGMs in optomechanical shells
	2.4. Acoustic velocity dispersion in the Rayleigh--Lamb modes
	2.5. Acoustic velocity dispersion in longitudinal modes
	2.6. Acoustic velocity dispersion in transverse (Love) modes
	2.7. Optomechanical coupling

	3. Conclusions
	Acknowledgments
	References

