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Theoretical and Experimental Study of Radiation
Pressure-Induced Mechanical Oscillations

(Parametric Instability) in Optical Microcavities
H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala

Abstract—Radiation pressure can couple the mechanical modes
of an optical cavity structure to its optical modes, leading to para-
metric oscillation instability. This regime is characterized by re-
generative oscillation of the mechanical cavity eigenmodes. Here,
we present the first observation of this effect with a detailed the-
oretical and experimental analysis of these oscillations in ultra-
high-Q microtoroids. Embodied within a microscale, chip-based
device, this mechanism can benefit both research into macroscale
quantum mechanical phenomena and improve the understand-
ing of the mechanism within the context of laser interferometer
gravitational-wave observatory (LIGO). It also suggests that new
technologies are possible that will leverage the phenomenon within
photonics.

Index Terms—Optical microcavities, optomechanical, paramet-
ric instability, photonic clock, radiation pressure.

I. INTRODUCTION TO PARAMETRIC INSTABILITY

A S CIRCULATING power is boosted in optical resonant
systems, there will be a natural tendency for these

systems to experience a radiation-pressure induced instability.
The instability is manifested as regenerative oscillations of
the mechanical modes of the cavity structure due to coupling
of optical and mechanical degrees-of-freedom caused by
radiation pressure. This has been recognized theoretically by
V.B. Braginsky [1], [2], and is termed “parametric oscillation
instability”. At a simplistic level, this excitation process can
be understood as follows. Each circulating photon in the cavity
changes its propagation direction twice every roundtrip. There-
fore, a photon transfers four times its linear momentum to the
cavity’s walls every time it completes a round trip. If the cavity
is not infinitely rigid, the walls will deform in response to the
resulting pressure. Hence, the pressure of circulating radiation
induces a mechanical expansion of the cavity structure; this
motion, in return, takes the optical cavity out of resonance with
the input pump wave, thereby lowering the magnitude of radia-
tion force. Upon restoration of the mechanical deformation, the
process resumes, leading to a periodic motion of the cavity as
well as the circulating power. It should be emphasized that this
oscillation is regenerative, exhibiting classic threshold behavior
and requiring no external modulation of the pump wave
(see Fig. 1).
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Fig. 1. Illustration of the radiation pressure-induced optomechanical coupling
mechanism. Bω

in, the input optical field (at frequency ω close to a resonant
frequency of the cavity ω0) to the Fabry–Perot causes large circulating field
Aω as a result of resonant power buildup in the cavity. The pressure caused
by this power moves the free-to-move cavity wall by x, modeled as a damped
harmonic oscillator at frequency Ω. Motion of the end mirror, on the other
hand, causes frequency change of the Fabry–Perot resonant optical mode. This
interaction at sufficient optical powers results in regenerative oscillations of
the end mirror and, consequently, the modulation of the output optical power
Bω

out.

More precisely, if one assumes the optical pump-wave fre-
quency (ω) is nearly resonant (but not exactly resonant) with
the optical mode, radiation pressure-induced deformation of the
cavity structure either lowers or raises the coupled optical pump
power, depending upon the sign of detuning of the pump fre-
quency relative to the cavity resonant frequency. It will be shown
that when the pump laser is detuned to the high-frequency tail of
the optical mode, the phase relationship between optical pres-
sure and optical cavity deformation results in net power transfer
from the optical pump to the mechanical mode. This transfer
manifests itself mathematically as a gain for the mechanical os-
cillations, with a corresponding threshold optical pump-power.

Theoretical studies have been devoted to ramifications of this
effect in the context of the Laser Interferometer Gravitational-
Wave Observatory (LIGO) [3], [4]. It has been predicted during
the past few years [1]–[6] that the parametric instability could
limit the maximum stored energy in Fabry–Perot cavities (FP)
used in the LIGO project, and hence limit the sensitivity of the
gravitational wave detector. Although never observed, recently
a bench top experimental setup was proposed to verify these
theoretical concerns on a smaller scale [7].

As will be discussed in detail in the following, the mutual cou-
pling of optical and mechanical modes is significantly enhanced
in smaller size cavities. Whereas in macroscopic resonators the
influence of radiation pressure is weak and only appreciable at
high power levels [8], it is significant in optical microcavities
(such as silica microspheres [9], microdisks, or microtoroids
[10]) which simultaneously exhibit ultra-high-Q optical modes
and small mechanical mass. To give an example, when coupled
to a waveguide, the high quality factor of whispering gallery
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Fig. 2. Schematic of the simple experimental set up used for observation of
transmission oscillations in toroid microcavities. The dc optical power of a laser
source is coupled to a microtoroid through a tapered optical fiber. The transmitted
optical power shows high amplitude modulations in the radio frequency range
upon detection by a photodetector.

microcavities (∼108) results in optical power buildup that can
exceed 100 W of circulating power for only 1 mW of waveguide
input power. The resulting radiation pressure due to confinement
of these high optical powers in micron-scale volumes can ex-
pand the cavity structure such that the optical resonant frequency
shifts by hundreds of the resonance linewidths. Therefore, the
combination of high optical quality factor, small size, and small
mechanical mass and dissipation can lead to threshold levels in
the microwatt regime for regenerative mechanical oscillations
(i.e., parametric oscillation instability) in whispering gallery
microcavities.

Radiation-pressure-induced optomechanical interaction has
similar properties to cavities containing a Kerr medium [11],
including hysteretic wavelength response caused by radiation
pressure [8]. In particular, both radiation pressure and the
Kerr effect induce a coupling between optical path length and
light intensity, one through cavity strain and the other through
the index of refraction. It is, therefore, not surprising that
radiation pressure has been proposed as an alternative path for
observation of quantum effects such as squeezing [11] as well
as numerous other quantum phenomena [12]–[17].

II. INTRODUCTION TO TRANSMISSION OSCILLATIONS AND

MECHANICAL EIGENMODES OF MICROTOROIDS

In this work, we will focus on the radiation-pressure-
induced parametric instability in whispering gallery microcav-
ities, specifically microtoroid resonators [10]. However, all the
aspects of this work may apply, in principle, to any type of op-
tical cavity. The details of microtoroid fabrication process are
reported in [10], but briefly, microtoroids are made of silica at-
tached to a silicon cylindrical pillar. Microtoroids can support
whispering gallery modes with Q factors above 100 million, and
can be directly coupled to tapered optical fibers.

We have recently observed transmission oscillations in the
radio frequency (RF) range when optical power is coupled to
sufficiently high quality factor optical modes (Q ≈ 107 or 10 ns
photon lifetime at infra red wavelengths) of toroidal microcavi-
ties [18]–[20], see Fig. 2).

Spectral analysis of the detected transmitted optical power
using a high-resolution electrical spectrum analyzer (ESA) re-
vealed extremely narrow peaks (sub-Hertz linewidths) at a fre-

Fig. 3. The measured spectral content of pump power (at 1550 nm) transmis-
sion as observed on an electrical spectrum analyzer (bandwidth set at 100 kHz).
Two families of frequencies are observed, along with their harmonics. Those at
lower frequency range are observed generally in the under-coupled regime, and
the higher frequency oscillations mostly in the over-coupled regime.

quency typically in the range of 10–100 MHz, as well as at
harmonics of this fundamental frequency (see Fig. 3). As can be
seen in Fig. 3, typically two distinct fundamental oscillation fre-
quencies (and their harmonics1) were observed: a low-frequency
mode (∼2–20 MHz), usually in the under-coupled regime, and
a high-frequency mode (∼40–100 MHz) in the over-coupled
regime (see [21] and references therein for definition of under-,
critical-, and over-coupled regimes).

Our further studies of this phenomenon revealed that in addi-
tion to their excellent optical properties, microtoroid resonators
also exhibit high-Q micromechanical modes, which are flexural
or radial in character and exhibit experimentally observed
Q-factors as high as 5000. We numerically investigated the me-
chanical eigenmodes of a toroidal structure. The right panel of
Fig. 4 shows the strain and stress of the first-three, rotationally-
symmetric eigenmodes of a toroid microcavity obtained by finite
element modeling. The left panel of Fig. 4 shows the experimen-
tally observed oscillation frequencies plotted versus length L
(see right panel for definition of L) as inferred by scanning elec-
tron microscopy (SEM) imaging. As is evident, the frequencies
increase with decreasing membrane length (L). Close agreement
of the measured RF oscillation frequencies with the results of the
numerical modeling (less than 2% discrepancy) confirms that the
first (n = 1) and third (n = 3) order flexural modes are respon-
sible for generating the observed low- and high-frequency fami-
lies of oscillations, respectively (see Fig. 3). In Section VI it will
be explained why the n = 2 mode is difficult to observe in our
experiments.

1The characteristics of the overall waveguide-resonator system can be viewed
as an optical modulator that is driven by this oscillation. This modulator has a
nonlinear transfer function that manifests itself (in the modulated pump power)
through the appearance of harmonics of the characteristic mechanical eigen-
frequencies. These harmonics are easily observed upon detection of the modu-
lated pump (see Fig. 2).
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Fig. 4. Right panel: finite-element modeling of the micromechanical modes of a silica toroid microcavity. The radial and azimuthal mode order are denoted with
n and m (where m = 0 corresponds to rotationally symmetric modes). Shown are the first three rotationally symmetric radial modes (n = 1, 2, 3, m = 0) in
cross section with the amplitude of motion greatly exaggerated for clarity. In addition, the stress field is indicated using color. Note that the mechanical motion
modulates the cavity path length due to a change in the cavity radius. Left panel: mechanical oscillation frequencies of the (m = 0, n = 1) and (m = 0, n = 3)
modes versus the cantilever length L (defined in the right panel). The dots are experimentally measured frequencies, and the solid lines are predictions of the
numerical modeling. The inset shows the agreement between the numerical predictions of mechanical frequencies and measured frequencies of oscillations.

The mechanical origin of these oscillations was also con-
firmed by lowering a metallic microprobe into proximity with
the plane of the silica disk connecting the toroid to the silicon pil-
lar (i.e., not the toroid itself, where the optical mode lies). Since
the probe is far removed from the toroidal whispering gallery, it
affects only the mechanical and not the optical properties of the
structure. The optical power oscillations were observed to fully
quench upon probe contact.

As evident in the renderings provided in Fig. 4, the n = 3
mechanical mode has a strong radial component to its mo-
tion, and hence understanding of its excitation by way of ra-
diation pressure (which itself is primarily radial in direction)
is straightforward. In contrast, the n=1 mode motion is trans-
verse, requiring a different method of force transduction (see
Fig. 5). The details will be presented later in Section VI where
it is shown that minute offsets of the optical mode from the
equatorial plane provide a moment arm for action of radiation
pressure. The resulting torque induces the transverse motion
associated with the n = 1 mode. Modeling and SEM measure-
ment of the offset via focused ion beam preparation confirms this
mechanism.

III. EQUATIONS OF MOTION FOR OPTICAL AND MECHANICAL

RESONATORS AND ADIABATIC APPROXIMATION

This system can be modeled using a set of coupled differ-
ential equations, one governing the harmonic motion of the
flexing toroid, and a second governing the resonant optical field.
The equation of motion for deformation (more precisely, the
displacement of the whispering gallery in the radial direction
(x)) is that of a damped harmonic oscillator driven by radiation
pressure (generated by the circulating optical field at the

Fig. 5. Left panel shows the cross section and excitation mechanism of the
fundamental (n = 1) flexural mode. The offset (∆) between the optical mode
location and the disk equatorial plane creates a lever arm for the radial optical
force (Frad) and, subsequently, a torque. The right panel shows the side view
image of a toroidal microcavity pumped by CW laser at 1550 nm. Green lu-
minescence is the result of Erbium up-conversion (from 1.5 to 0.5 µm), which
in this specific case, is intentionally doped in the microtoroid to illustrate the
location of the optical mode. Note that the optical mode (green) is higher than
the “cantilever beam” holding the microtoroid, attesting the existence of the
offset (∆) in the left panel.

periphery of the microtoroid)

¨x(t) + γ0ẋ(t) + Ω2x(t) =
f(t)
meff

=
2πn

meffc
|A(t)|2 (1)

where meff is the effective vibrating mass of the mechanical
structure in the radial direction (the direction which alters the
optical resonant frequencies of the cavity), Ω is the mechanical
frequency of the oscillation (one of the eigenfrequencies of the
structure), and γ0 is the intrinsic mechanical damping coeffi-
cient determining the mechanical quality factor Qm = Ω/γ0.
f(t) is the radial force applied by radiation pressure of the
slowly varying field amplitude A(t) (normalized so that |A(t)|2
is the circulating optical power). c/n is the velocity of light
in the cavity. As the optical resonance shifts with structure
expansion, the frequency difference between the input field and
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the moving-cavity resonance changes as

∆ω(t) = ∆ω0 − (ω0/R)x(t). (2)

Here, R represents the radius of the microcavity (or more
precisely of the optical whispering gallery mode). The mechan-
ically induced displacement of the optical cavity resonant fre-
quency contains, in general, a contribution from spatial and
refractive index changes (stress optical effect)2 [22]. The opti-
cal field in the cavity, on the other hand, obeys the following
equation [23]:

Ȧ(t) + A(t)
[

ω

2Qtot
− i∆ω(t)

]
= iB

√
ω

TQext
(3)

B is the input pump field (normalized such that |B|2 is optical
power); Qtotal is the total quality factor of the optical mode,
made up of an intrinsic contribution Q0 and a waveguide-loading
contribution Qext : 1/Qtotal = 1/Q0 + 1/Qext (see [21]); and
T is the photon round trip time in the cavity.

In this section, we will solve the preceding system of equa-
tions assuming what we will call the “adiabatic approximation.”
This approximation holds when Ω � ω/Qtot (i.e., mechanical
frequency is much smaller than the optical cavity bandwidth).
The adiabatic picture provides a clear and intuitive understand-
ing of the described optomechanical interaction. In Section V,
we will solve the system with a more general approach, reveal-
ing the details of this interaction.

In the adiabatic regime, (1)–(3) can be solved self-
consistently, leading to a mechanical gain term which is a linear
function of the circulating optical power, and that offsets intrin-
sic sources of mechanical damping as given as follows. This
leads to a threshold optical pump power for onset of mechanical
oscillations

γ = γ10(1 − P/Pthreshold),

Pthreshold =
R2ω2

0mΩ
64

f(d)
Qext

Q4
totalQm

(4)

where the intrinsic mechanical damping coefficient γ0 is modi-
fied to γ in the presence of the optical power in the waveguide
(P ), and where Pthreshold denotes the incident (in the waveg-
uide) threshold power (i.e., not the power coupled into the res-
onator).

At strong coupling regimes (Qext � Q0), the overall quality
factor is dominated by waveguide loading (i.e., Qtot ≈ Qext),
and hence (4) predicts that in this regime, the threshold power
scales approximately with 1/Q3

total, emphasizing the impor-
tance of high optical Q. Also apparent from (1) is the rapid
scaling of the threshold power with cavity dimensions. Tak-
ing into account the scaling of the effective vibrating mass
and its frequency, threshold power scales approximately with
Pthreshold ∝ R4. This explains why this effect, not yet observed
in the context of the LIGO project, is more likely to occur in
microcavities with high Q factors and small dimensions.

2From the simulations, it is calculated that the change in refractive index due
to the stress-optical effect is more than one order of magnitude smaller compared
to the direct spatial change in cavity path length [i.e., 2π(R + dR) × (∆n +
neff) ≈ 2πneff (R + dR)].

In (4), d is the detuning factor, giving the normalized detun-
ing of the optical frequency from the resonant optical pump
frequency of the cavity (ω0) in units of its linewidth (i.e.,
d ≡ (ω − ω0)/(2ω0/Qtotal)), and f(d) = (1 + d2)3/d is a fac-
tor that is positive for blue detuning of the pump (and negative
for red detuning). This factor, emerging from the analysis, re-
flects the intuitive picture described earlier, requiring a particular
phase relation between variation in coupled radiation pressure
and cavity deformation in order that power is transferred from
the optical mode to the mechanical mode, and not the other
way.3Analyzing the preceding system in the time domain by nu-
merically solving the coupled differential (1)–(3) offers a clear
picture of the energy flow between mechanical and optical fields,
and the interaction between the mechanical and optical res-
onators both present in the same device. Applying the predictor-
corrector Adam’s method on (1)–(3) reveals the system dynam-
ical behavior (A(t), x(t)). Having A(t), one can calculate the
output power |(1 − Tω/2Qtot)B + i

√
Tω/QtotA(t)|2 [23].

Mechanical oscillations typically evolve to their full extent
(starting from mechanical rest) within five time constants of
the mechanical structure (10/γ). For small oscillation ampli-
tudes (x � R/Qtot), a nearly linear amplitude relation ex-
ists between mechanical motion and output power modulation.
For larger oscillations, however, the system response becomes
nonlinear as the microstructure vibration amplitude induces a
corresponding shift in optical resonant frequency that exceeds
the cavity linewidth (see Fig. 6). Interference of the station-
ary pump wave and the field discharged from the cavity re-
sults in a train of decaying peaks reflecting the fact that light
discharged from cavity is decaying exponentially with time,
and is frequency shifted due to cavity vibrations. This behav-
ior of output power is depicted in Fig. 6(a) and (b). At even
larger oscillation amplitudes, we have also observed regimes
where the system becomes sensitive to infinitesimal noise in
the initial conditions when a specific threshold power is ex-
ceeded, resembling the chaotic behavior of the damped, driven
pendulum.

Fig. 6 shows the numerically solved cavity deformation, the
optical power in the cavity, and their interaction during a few
mechanical time cycles. Cavity motion r(t) (not to be con-
fused with radial part of it x(t)) exhibits a flex of a few Å,
which corresponds to a resonance shift of few cavity band-
widths [Fig. 6(c)]. Cavity velocity (∂tr(t)) is about 0.9 mm/s
when the cavity resonance crosses the pump laser wavelength
[Fig. 6(d)]. The cavity is then charged to a circulating power
(|A(t)|2) that approaches 50 W [Fig. 6(e)] causing a centrifu-
gal radiation force (f) that approaches 1.4 µN . Upon cavity

3For f (d) < 0, i.e., a red shift of the pump frequency with respect to the
cavity mode, the phase of the radiation pressure variations actually damps or
“cools” the vibrations. Note that no external feedback system is necessary here to
damp the vibrations or “cool” the resonator. The feedback system is inherent to
the coupling mechanism. Due to the high quality factor of our cavities (Q ∼ 10
million) the “red shifted” tail of the optical mode is not thermally stable (see
H. Rokhsari et al.,“Loss characterization in microcavities using the thermal
bistability effect,” Appl. Phys. Lett., vol. 85, pp. 3029–3031, 2004). Replacing
the cavity material (silica) with a negative thermooptic coefficient material
would stabilize the red shifted tail and cavity-cooling induced by radiation
pressure effects could be observable.
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Fig. 6. Plots versus time of (a) measured, and (b) calculated transmitted optical
power; (c) cavity displacement; (d) velocity; (e) optical power circulating in
cavity (left ordinate) which is proportional to the total radial force (right ordinate)
applied by radiation on the cavity; (f) power flow to mechanical mode; and
(g) energy transferred to mechanical mode from radiation. Here, the toroid radius
is R = 29 µm, the mass was calculated (from SEM imaging) to be 5 × 10−11

Kg, the intrinsic mechanical quality factor was measured to be 1200, and the
mechanical oscillation frequency occurs at 5.4 MHz. The pump power frequency
is fixed at detuning of 0.55 full-width at half maximum (FWHM) away from
the cavity optical resonance (λ0 = 1461 nm), and the optical quality factor was
measured to be Qo = 5 × 107.

expansion, the power (f(t)∂tµr(t)) applied by radiation on the
moving structure approaches 0.2 nW [Fig. 6(f)]. The resulting
transference of energy is manifested as a red Doppler shift in
the circulating photons. Upon the cavity shrinking, power flows
back to the optical mode from the mechanical potential energy;
the circulating photons then experience a blue Doppler shift.
A significant point is again the need for the pump wave to be
blue detuned with respect to the microcavity resonance (d > 0
in (4)) in order to induce oscillations. Because of this detuning,
the pump wave spends a little more time to one side of the mi-
crocavity resonant frequency [Fig. 6(c)] explaining why energy
(
∫ t

0 f(t′)∂t ′µr(t′)dt′) flows on average from the optical mode
to the mechanical mode [Fig. 6(g)] and generates gain for me-
chanical vibrations as predicted by (4). In this example, for each
acoustical cycle, 9 × 10−18 J of energy are given to the optical
mode upon shrinking, but then 10 × 10−18 J are taken from the
optical mode upon expansion [Fig. 6(g)]. This energy difference
drives the mechanical vibrations. The sign of the energy flow
will be reversed if the pump detuning changes sign. It is interest-
ing, and the reader can verify, that the net energy transferred to
the mechanical mode in every cycle (10−18 J) is equal to the dis-
sipated mechanical energy (stored mechanical energy divided by
the mechanical quality factor, Edissipated = (2πEm )/(Qm )).

IV. EXPERIMENTAL STUDY OF BELOW AND ABOVE

THRESHOLD BEHAVIOR

In order to verify the predictions of the preceding findings
in the subthreshold regime, the mechanical damping rate was
measured as a function of optical pump power. In this regime,
damping of mechanical oscillations can be decreased by inject-
ing optical power into the microtoroid, yet the induced mechani-
cal gain is not sufficient to initiate the regenerative vibrations. To
measure the damping rate, an optical pump and probe approach
was used with two laser beams (a strong pump and a weak
probe) individually resonant with two whispering gallery mode
optical resonances. The experimental setup is depicted in Fig. 7.

Two, external-cavity diode lasers with 300 kHz linewidth
were used as laser sources. The pump laser in the 1550 nm band
and the probe laser in the 1480 nm band were coupled to the
microcavity using a tapered optical fiber formed by heating and
stretching a length of single mode fiber [24]. The output of the
1550 nm laser was weakly modulated using a Mach–Zehnder
modulator. In this way, the “dc” component of the pump power
creates gain for the mechanical modes, while the alternating
component creates a harmonically varying radiation pressure
which acts as a forcing function on the subthreshold vibra-
tional modes. Since the response motion also causes frequency
shifts of the optical mode that are resonant with the probe sig-
nal, the mechanical response as a function of forcing-function
frequency can be measured using the optical probe wave. The
resulting modulation of the probe power can be measured using
a lock-in amplifier, and it can be related to the amplitude of
vibrations by measuring the quality factor of the optical mode
coupled to the probe wave and its detuning from probe signal
(for these experiments, the weak probe beam was coupled to
a low Q(∼ 106) whispering gallery resonance to ensure that
probe power would not induce a competing oscillation effect).
In this way, “vibrational spectroscopy” can be performed by
sweeping the modulation frequency through the vibrational res-
onances. This spectroscopy reveals the lineshape of the me-
chanical resonance, and hence its linewidth (and damping rate
or, equivalently, the mechanical Q factor). Fig. 8 gives sam-
ple spectroscopic scans over an n = 1 vibrational mode with a
resonant frequency of 7.67 MHz. The solid lines are the the-
oretical fits using a damped harmonic oscillator model for the
mechanical motion. The inset in Fig. 8 gives measured damp-
ing rates (extracted from the theoretical fits like that shown in
the main figure) plotted versus optical pump power using the
pump/probe spectroscopy measurements. A linear decrease in
damping with increasing pump power is evident in the data
(in agreement with (4)). Also apparent is the threshold power,
which, in this case, is expected to occur at an optical pump
power of 11 µW. The intrinsic Q factor of the mechanical mode
(i.e., Q factor at zero input pump power) is inferred to be 630 in
this data.

To characterize the mechanical modes in the above-threshold
regime, the weak modulation of the pump power was terminated
(i.e., steady pump wave) and the spectral content of the transmit-
ted probe power was analyzed to monitor regenerative mechan-
ical oscillation. The Fourier component of the transmitted probe
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Fig. 7. The experimental setup used for characterizing the mechanical oscillations of microtoroids in the subthreshold regime. Two wavelength couplers are
used to ensure high extinction of the pump power in the probe channel. The picture is a top-view optical micrograph of a toroid microresonator evanescently side
coupled to a tapered optical fiber.

Fig. 8. Measured amplitude response (points) of the mechanical vibrations of
an n = 1 mechanical mode as a function of driving-force frequency (modulation
frequency of the pump power). Circles (green), triangles (red), and stars (blue)
represent the data for 2 µW, 5 µW, and 9 µW of average pump power. The
inset shows the effect of the optical power on the linewidth of the mechanical
oscillator inferred from the theoretical fits (such as the solid lines in the main
figure). A linear fit shows a threshold of 11 µW for the mechanical oscillations,
and an intrinsic quality factor of 630 for the measured mechanical mode of the
toroidal structure.

power at the mechanical resonant frequency (Ω) was monitored
by the electricalspectrum analyzer. The intensity of this signal,
proportional to the amplitude of the vibrations caused by the
pump wave, was measured as a function of pump power. Fig. 9
contains a typical result of these measurements for one of the
studied devices, and shows a clear threshold for the vibrational

Fig. 9. Measured mechanical oscillator displacement as a function of the
optical pump power showing threshold behavior. Oscillations initiate at about
20 µW of input power, and start to saturate for higher values of pump power.
This saturation is associated with the lower optical-mechanical coupling at
displacements large enough to shift the resonant frequency of the optical mode
by greater than its linewidth.

oscillations. Since the oscillator behaves as an optical power
modulator1, the electrical spectrum analyzer data can be trans-
formed to compute the actual amplitude of mechanical motion.
More precisely, modulation depth in the optical power can be
transformed into frequency variation caused by the mechani-
cal motion using the measured linewidth of the optical mode.
This frequency variation, however, is directly proportional to
the ratio of amplitude of the mechanical motion to the radius of
the microtoroid. This transformation has been used to calibrate



102 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 12, NO. 1, JANUARY/FEBRUARY 2006

Fig. 10. Panel A represents Braginsky’s view of parametric instability in the frequency domain, where the Stokes sideband coincides with an adjacent optical
mode. Panel B shows the scenario we have encountered in our observations where the Stokes and anti-Stokes sidebands both fall almost within the bandwidth of
the same optical mode. Panel C shows the experimental demonstration of the panel B scenario. Optical power out-coupled from a toroid microcavity oscillating
at about 5-MHz frequency is measured by a 1-MHz-resolution spectrum analyzer (high finesse Fabry–Perot). Higher order optical sidebands exist due to the
nonlinear nature of the “modulation” transfer response function of the resonator-waveguide system. Theoretical predictions are also given.

the vertical axis in Fig. 9. The data in Fig. 9 also seem to sug-
gest that the amplitude of the vibrations saturates at high pump
powers. Numerical modeling shows that this behavior can be
attributed to the induced frequency shifts of the cavity which,
for higher pump power levels, exceed the cavity linewidth. This,
in turn, reduces the efficacy of the pumping mechanism as the
pump wave spends a progressively smaller fraction of time on
resonance during each mechanical cycle. 4

V. BEYOND ADIABATIC APPROXIMATION: COUPLED MODE

THEORY OF PARAMETRIC INSTABILITY

In the theoretical work of Braginsky [1], [2], it was shown
that the interaction of the vibrating resonator (at frequency
Ω) with photons inside the cavity results in creation of pho-
tons down-shifted (Stokes sideband, ω − Ω) or up-shifted (anti-
Stokes sideband, ω + Ω) in energy from the original photons
by the frequency of the vibrations. If the Stokes field coincides
with an adjacent optical resonance [Fig. 10(a)], beating of the
pump and Stokes sideband provides mechanical gain for regen-
erative mechanical oscillations, thereby causing the parametric
oscillation instability.

It is important to note that optical resonances with Q-factors
in the 106 − 108 range have resonant linewidths in the range of
approximately 2–200 MHZ in the infrared frequencies, which

4For the sample tested, it is calculated that radial variations of about 10 pm
will shift the resonant frequency of the excited optical mode by its linewidth.

is indeed the range of the first three fundamental flexural modes
for typical toroidal geometries employed in this work. This
insight suggests that in addition to the Braginsky’s theory [1],
where the Stokes mode must coincide with an adjacent optical
mode, mechanical oscillations can also occur when the me-
chanical resonance frequencies (Ω) falls within the same cavity
bandwidth (ω/Qtot)5 of the pump mode (i.e., Ω ≈ ω/Qtot),
henceforth called the “in-band” case [Fig. 10(b)].

The adiabatic regime, for example Ω � ω/Qtot (see
Section III), is, in fact, a special case of the in-band paramet-
ric instability (Ω ≈ ω/Qtot), where Braginsky’s “out of band”
picture does not hold. The adiabatic approach has to be mod-
ified, however, to predict correct threshold powers where the
mechanical frequency is comparable or even larger than the op-
tical resonant linewidth (which are also observed in our studies),
but is still too small to generate sidebands coinciding with an
adjacent optical mode [see Fig. 10(a) and (b)]. To arrive at an
analytical expression for the threshold power in these cases, we
have extended the theory of Bragisnky for a Fabry–Perot cav-
ity [1]. Using the slowly varying envelope approximation and
the formalism of H. Haus, the mutual coupling of mechanical

5In special cases, we also observed the classical V. B Braginsky case, which
can occur since the WGM modes typically appear as doublets, due to the lifting
of the CW and CCW mode degeneracy. If this doublet splitting coincides with the
mechanical oscillation frequency, parametric oscillation instability can occur,
when pumping the blue-shifted doublet eigenmode, whereas it is absent on the
red-shifted eigenmode.
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and optical modes can be described by

d

dt
xm = − Ω

2Qm
xm − i

2Rneff
√

meffC(Γ)
eiΩt · |a|2

d

dt
a = − ω0

2Qtot
a +

[
i∆ω +

iω0

RΩ
√

meff
eiΩtxm

]
a

+ i

√
ω0

Qtot
B. (5)

These equations are identical to (1)–(3). The first equation de-
scribes the mechanical eigenmode with an effective mass meff ,
where xm (as opposed to x, which represents the radial mo-
tion of the cavity used in (1)–(3)) is normalized to mechanical
energy; i.e., |xm |2 =

∑
i=r,z ,θ

∫
εiσidV (σi and εi are the di-

agonal components of the stress and strain tensor), which de-
cays with the lifetime (Qm )/(Ω). C(Γ) is a correction factor
[1, . . . , 2] due to the reduction of circulating power in the pres-
ence of modal coupling [25]. Correspondingly, is the energy in
the optical WGM mode (as opposed to |A(t)|2, used previously
to denote the optical power in the cavity), which is excited with
a pump laser (with power |B|2) detuned by the amount ∆ω from
line-center, ∆ω = ω − ωo .

Assuming the optical field in the cavity is composed of the
pump, and the generated Stokes and anti-Stokes fields with
corresponding detunings ∆ω,∆ωS = ∆ω − Ω, and ∆ωAS =
∆ω + Ω, from cavity line-center ω0 (i.e., aei∆ωt = ape

i∆ωt +
aS ei∆ωS t + aASei∆ωASt), then (5) results in four coupled mode
equations

∂xm

∂t
= − Ω

2Qm
xm +

−i

2Rneff
√

meffC(Γ)
(a∗

paAS + apa
∗
S ),

∂ap

∂t
= − ω

2Qtot
ap + i∆ωap

+
iω

R
√

meffΩ
(x∗

m aAS + xm aS ) + i

√
ω

Qext
B

∂a∗
S

∂t
= − ω

2Qtot
a∗

S − i(∆ω − Ω)a∗
S − iω

R
√

meffΩ
xm a∗

p ,

∂aAS

∂t
= − ω

2Qtot
aAS + i(∆ω + Ω)aAS +

iω

R
√

meffΩ
xm ap .

(6)

Solving (6) in steady state yields the threshold for radiation
pressure-induced mechanical oscillation

Pthresh = R2meff
ω0

Q0Qtot

Ω2

Qm

|1 + K + 2iQ0∆ω/ω0|2
8K

×


 1

1 + 4
(

Qtot∆ωAS
ωo

)2 − 1

1 + 4
(

Qtot∆ωS

ωo

)2



−1

.

(7)

The threshold equation reveals that in order to arrive at oscil-
lation, the mechanical loss has to be overcome (i.e., the expected
(1)/(Qm ) dependence). Dependence of radiation pressure upon

Fig. 11. Mechanical gain as a function of detuning (negative detuning corre-
sponds to a redshift) and taper waveguide cavity-coupling (simulation parame-
ters υ1 = 4.4 MHz, υ3 = 49.8 MHz, Q0 = 5 × 107). Maximum gain for the
n = 1 mode occurs in the undercoupled regime (log(K) < 0), whereas for the
n = 3 mode it occurs overcoupled (log(K) > 0). Inset: Log-Log plot of the
minimum oscillation threshold power for the n = 1 and n = 3 mode (7) versus
the intrinsic optical quality factor.

circulating optical power, however, leads to the (1)/(Q0) depen-
dence, as well as the presence of a weighting factor describing
the effect of waveguide coupling, K = (Qo)/(Qex) [25]. The
last term results from the interplay of the Stokes and anti-Stokes
photons and is related to the detuning factor f (d) introduced in
Section III on the adiabatic approximation. Fig. 11 shows a plot
of the mechanical gain as a function of both coupling (K) and
detuning frequency (∆ω) for the n = 1 and n = 3 mechanical
modes, which will be predominantly analyzed in the experi-
ments. It is noted that the mechanical gain is only positive for a
blue detuned pump with respect to the cavity resonance ∆ω > 0.
This situation leads to more Stokes than anti-Stokes photons
(the ratio being |(aAS)/(aS )|2 = ((ω0/Qtot)2 + 4(∆ωS )2)/
((ω0/Qtot)2 + 4(∆ωAS)2)), and causes a net mechanical gain.
The converse is true for red-detuned pump, which causes the me-
chanical resonance to experience negative gain (i.e., damping).
For the special case of zero pump detuning, the gain vanishes.
These predictions are in agreement with our findings in the
adiabatic regime (see (4) and definition of d factor).

Furthermore, it is interesting to investigate the exact
Q-factor dependence of threshold power shown in the in-
set of Fig. 11. As expected, in the adiabatic regime Ω �
ω/Qtot, the mechanical oscillation threshold power scales
as Pthresh ∝ (1)/(Qm ) · ((1)/(Q0))3 in agreement with our
previous expression for this regime (the reader can verify that in
this regime, the expression for threshold power reduces exactly
to (4)). In contrast, if the mechanical eigenfrequencies lie out-
side the cavity bandwidth, i.e., Ω > ω/Qtot, then the threshold
scales as Pthresh ∝ (1)/(Ω2Qm ) · (∆ω)/(ω0), causing a rolloff
of the optical Q dependence. In fact, analysis of (7) shows
that the minimum threshold ((∂Pthresh)/(∂K∂∆ω) = 0) for
higher optical Q factors approaches asymptotically a limiting
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Fig. 12. Main panel: measured mechanical oscillation threshold (µW ) plot-
ted versus the optical quality factor for the fundamental flexural mode (n =
1, Ω/2π = 4.4 MHz, Qm = 3500) on a double logarithmic scale. The solid
line is a one-parameter theoretical fit obtained from the minimum threshold
equation by first performing a minimization with respect to coupling and
pump wave detuning, and then fitting by adjustment of the effective mass

(m(1)
eff

≈ 3.3 × 10−8 Kg). Inset shows the measured threshold for the 3rd order
mode (n = 3, Ω/2π = 49.8 MHz, Qm = 2500) plotted versus optical Q. The

solid line gives again the theoretical prediction with m
(3)
eff

≈ 5 × 10−11 kg.
The n = 1 mode data from the main figure is superimposed for comparison.

value, which can only be achieved for progressively stronger
overcoupling (and correspondingly increasing the cavity band-
width until the condition ω/Qtot ≈ Ω is met). The rollover
from inverse-cubic behavior occurs when (ω0)/(Q0) ∝ Ω; i.e.,
Qroll−over

0
∼= (ω0)/(Ω) as observed in the inset of Fig. 11.

VI. EXPERIMENTAL INVESTIGATION OF PARAMETRIC

INSTABILITY THRESHOLD POWER

In order to confirm the threshold dependence (as given by
(7)) on both optical and mechanical Q-factors, we have car-
ried out numerous experiments and simulations on a single
toroid microresonator. The microtoroid under consideration
had principal, pillar, and toroid diameters of 72 µm, 36 µm,
and 6.8 µm and possessed mechanical resonance frequencies
at (4.4 MHz, 25.6 MHz, and 49.8 MHz) for the first three
modes (n = 1, 2, 3 and m = 0). Minimum threshold power
was measured by optimizing the detuning and coupling (com-
pare Fig. 11). The result of this measurement is shown in
Fig. 12. A Log-Log plot is used to infer the critical expo-
nent, which shows excellent agreement with the prediction
(1/Q3) for the adiabatic regime. For progressively higher Q
values, the theoretically predicted rollover of the 1/Q3 thresh-
old dependence is observed. The rollover point occurs at a Q
of approximately 107, which agrees well with the prediction
Qroll−over

0 = (ω0)/(Ω) for the first-order flexural mode. The
solid line is the minimum threshold as given by (7) which is min-
imized with respect to detuning (∆ω) and coupling (K) to reflect
the experiments; i.e., (∂Pthresh)/(∂K∂∆ω) = 0. The effective
mass was the only fit parameter used, and was inferred to be
(m(1)

eff ≈ 3.3 × 10−8 kg).

Fig. 13. Scanning electron micrograph of a cross section of the toroid micro-
cavity used in this study. The cross section was revealed by focused ion beam
(FIB) technology, which allowed removal of a 2-µm-wide section. The slicing
clearly reveals the presence of an offset of the 7-µm-diameter toroid with respect
to the 2-µm-thick silica support disk (in this case, an offset of approximately
1.3 µm, dotted lines). Inset: side view of the toroid microcavity inferred from
the FIB method.

The threshold for the third-order flexural mode was also
recorded. This mode has a resonance frequency of 49.8 MHz
with Qn=3

m ≈ 2500. Consequently, for optical Q factors in the
range of 107, this mode is in the beyond-cavity-bandwidth
regime, since Qroll−over

0 = (ω0)/(Ω) = 4 × 106. In the exper-
iments, oscillation on this high frequency mode was only ob-
served by adjusting the taper-resonator coupling junction into
the over-coupled regime, in agreement with theory. In this
regime, the low frequency flexural mode could not be excited
any more, and a transition from n = 1 to n = 3 occurred. This
transition is in excellent agreement with the theoretical predic-
tion of (7), as plotted in Fig. 11. The inset of Fig. 12 shows
the measured threshold for the n = 3 mode in comparison
with the n = 1 mode, both plotted versus optical Q. The sin-
gle parameter fit yields an effective mass for the n = 3 mode
which is significantly lower than for n = 1 by a factor of 660;
i.e., m

(3)
eff ≈ 5 × 10−11 kg. Note that this measured dependence

should be compared to the theoretical plot given within the inset
to Fig. 11.

For the n = 3 mode, the predicted effective mass from our
numerical models was m

(3)
eff ≈ 5 × 10−11 kg, which is in very

good agreement with the experimental fit in Fig. 12. Further-
more, this value is exceptionally close to the actual mass of the
vibrating structure.

For the n = 1, 2 modes, however, the calculated effective
mass is a strong function of the offset of the toroidal ring with
respect to the equatorial plane of the disk.6 As explained in
Section II, excitation of the n = 1 mode by radiation pres-
sure can only be explained by existence of this offset. To both
validate and quantify this offset, a cross section of the toroid
microcavity used in the study was obtained with focused-ion
beam slicing. SEM imaging, included in Fig. 13, reveals the
presence of the previously postulated equatorial offset, which
amounts to an offset of 1.3 µm. Incorporation of this offset to the
numerical mass calculations yields m

(1)
eff ≈ 2.6 × 10−8 kg, and

6We note that such an offset must exist, since otherwise mechanical motion
of the n = 1, 2 modes causes modulation of the path length at the frequency
2Ω (i.e., frequency doubling), which is not observed in experiments.
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Fig. 14. Mechanical threshold power (in µW) versus the mechanical quality
factor of the n = 1 mode. The solid line is the theoretical prediction (Pthresh ∝
1/Qm ). Inset: optical micrograph of the side view of the experimental setup,
consisting of a silica microprobe in proximity to a fiber-coupled microtoroid of
72 µm principal diameter.

m
(2)
eff ≈ 2 × 10−9 Kg. The n = 1 value agrees very well with the

experimental values from Fig. 12. Finally, the numerical model
also explains why the n = 2 mode is observed only subthresh-
old in the experiments. The low mechanical Q value (∼200), in
conjunction with its high effective mass and frequency, predicts
threshold powers >2 mW, well beyond the threshold values of
the n = 1 and n = 3 modes.

We next proceeded to verify the dependence of threshold
power on the mechanical quality factor. As both optical and
mechanical Q affect threshold, a method was needed which
could reduce the mechanical Q factor while leaving the optical
Q factor unchanged. To this end, we used a silica microprobe
fabricated by heating and stretching a single mode fiber using
a CO2 laser. An optical micrograph is shown in the inset of
Fig. 14 where the mechanical probe is mounted on a three-axis
piezoelectric stack, and positioned above the fiber-taper coupled
microtoroid. When the probe was brought into contact with parts
of the microstructure exhibiting high-amplitude mechanical os-
cillations (compare the mode profiles in Fig. 4), a reduction of
the mechanical Q factor was observed, while leaving the op-
tical Q factor unaffected. The change in mechanical Q-factor
was measured by fitting the ESA measured resonances in the
subthreshold regime with Lorentzian profiles. Without contact,
the mechanical Q was measured to be ∼5000 for the n = 1
mode, and upon progressive increase in tip pressure (controlled
via piezo-electric distance), the mechanical Q could be contin-
uously decreased by nearly two orders of magnitude, down to a
value of 50. Upon retrieving the probe, the original Q-factor was
recovered. The microprobe method thus allowed changing the
mechanical Q while leaving the optical modes unperturbed. For
each mechanical Q, the minimum threshold for the n=1 flexural
mode (by optimizing both ∆ω and K) was measured. Fig. 14
shows the measured minimum threshold for oscillation of n=1
mode as a function of mechanical Q-factor, clearly revealing
the 1/Qm dependence of the oscillation threshold, in agree-
ment with (4) and (7), as well as with the theoretical predictions

of Braginsky [26], [27]. This method also provides a technique
to prevent parametric oscillation instability for cases where this
effect is not desirable.

VII. CONCLUSION

It should be noted that mechanical oscillations in microstruc-
tures can be generated using alternative methods. For exam-
ple, [28], [29] describe thermally actuated mechanical vibrations
of a silicon disk and a silicon cantilever, respectively. In con-
trast, the long thermal time constant of the toroid structures in
the present work (τthermal is in the order of 5 µs [30], [31]) pre-
cludes initiation of RF rate oscillations such as those observed
here. Also significant is the expected threshold dependence on
optical Q for thermally driven instabilities. Because resonator
deformation for a thermally driven process (as opposed to radia-
tion pressure) depends on coupled optical power (not circulating
power), one expects an inverse quadratic scaling of the threshold
power with optical Q (Pthreshold ∝ Q−2) for thermally-induced
oscillations as opposed to inverse cubic (Pthreshold ∝ Q−3) for
radiation pressure induced oscillations verified in this study.
Excellent agreement of the threshold functional dependence on
optical and mechanical Q factors, and precise numerical pre-
dictions of the threshold power, provides confirmation that ra-
diation pressure is the excitation mechanism of the observed
oscillations.

The work presented here is the first demonstration of the
radiation pressure induced parametric instability in optical res-
onators of any kind. This work demonstrates how vibrational
and optical modes of the same cavity structure can act as para-
metrically coupled oscillators despite of their very different fre-
quencies (∼107 against ∼1014 Hz). Realization of this effect
in the microscale can be utilized as a platform for studying the
parametric instability limitations for the LIGO project.

In small microtoroids (we were also able to observe similar
oscillations in silica microspheres), occurrence of these oscil-
lations has been observed with threshold powers well below
those of other nonlinear effects such as Raman [32], [33], Kerr
parametric oscillation [34] and lasing due to intentional doping
of rare earth elements into the microcavities [35]. This clearly
suggests that radiation pressure-induced effects can establish a
practical limit for miniaturization of optical microcavities. This
miniaturization limit can be extended by adding a mechanical
damper (or displacement limiter as in Fig. 14) to the cavity struc-
ture. Yet, the fundamental nature of circulating light to apply
pressure and the general nature of structural stiffness to reduce
with miniaturization7 suggests that it is likely that all optical
cavities are susceptible to these oscillations at various optical
powers. The inverse cubic dependence of threshold power sug-
gests that current efforts directed towards realization of higher
Q optical microcavities will only tend to accelerate the obser-
vation of these oscillations in other microcavity systems, either
as a limiting floor in miniaturization, or as a useful new opto-
mechanical nonlinearity.

7The spring constant of a structure is proportional to its cross-sectional area
divided by its length, and hence spring constant decreases with size.
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Fig. 15. Panel A illustrates the “below threshold” behavior where the optical
pump wave at frequency ω is not strong enough to induce mechanical oscillations
of the microtoroid. Panel B illustrates the “above threshold” case for the n=3
vibrational mode. Mechanical oscillation at frequency Ω creates optical stokes
(ω − Ω) and anti-Stokes sidebands (ω + Ω) in the transmitted pump wave.
Inset of panel B shows the exaggerated cross section of the third order mode
and variation of the toroid radius as a result of these oscillations.

Beyond limitations caused by radiation pressure-induced op-
tomechanical coupling, the parametric instability demonstrates
a new class of hybrid oscillators where a continuous source of
pump laser power (without any type of external feedback sys-
tem) can generate radio-frequency mechanical vibrations of a
micromechanical structure (a rendering of the oscillation pro-
cess for the n = 3 mode is shown in Fig. 15). These oscillations
imprint onto the optical pump, now an optical carrier for RF
frequencies. Realization of this effect undoubtedly benefits ap-
plications in RF micromechanical oscillators [36] on a chip, and
all-optical frequency reference devices.

Besides the fundamental aspects of this work, the observed
coupling of mechanical and optical modes by radiation pressure
can find applications in micromechanical and nanomechanical
systems [37] for ultrahigh sensitivity measurements of charge
[38], displacement, mass, force [39], or biological entities [40].
Equally important, radiation pressure, as observed here, can be
used to achieve cooling of mechanical resonator modes [29].

We believe the promising consequences of our recent research
results will pave the way for further practical applications of
UHQ microcavities and introduce them to an exciting and novel
realm of science.
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